Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(cosx)=10 có 2 nghiệm phân biệt thuộc ( 0 ; 3 π 2 ] là
A. [-2;2]
B. (0;2)
C. (-2;2)
D. [0;2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình f(cosx) = m có 3 nghiệm x phân biệt thuộc khoảng ( 0 ; 3 π 2 ] thì phương trình f(cosx) = m phải có hai nghiệm cosx phân biệt, trong đó có 1 nghiệm thuộc (-1;0] và một nghiệm thuộc (0;1)
Dựa vào đồ thị, suy ra m ∈ (0;2)
Chọn B.
Đặt t=2sinx+1 với
Phương trình trở thành: f(t)=m có nghiệm
Chọn đáp án A.
Chọn đáp án D.
Do đó để phương trình f sin x = m có nghiệm trong khoảng (0;p)
thì phương trình f t = m có nghiệm t ∈ ( 0 ; 1 ]
Chọn đáp án B
Phương pháp
+) Đặt t=cosx, xác định khoảng giá trị của t, khi đó phương trình trở thành f(t)=m.
+) Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và y=m song song với trục hoành.
Cách giải
Đặt t=cosx ta có
Khi đó phương trình trở thành f(t)=m.
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và y=m song song với trục hoành.
Dựa vào đồ thị hàm số y=f(x) ta thấy phương trình f(t)=m có 2 nghiệm phân biệt thuộc [-1;1) khi và chỉ khi mÎ(0;2).