Cho hàm số y = x + 2 2 x + 3 có đồ thị (C). Đường thẳng d có phương trình y = a x + b là tiếp tuyến của (C), biết d cắt trục hoành tại A và cắt trục tung tại B sao cho tam giác OAB cân tại O, với O là gốc tọa độ. Tính a+b
A. -1
B. -2
C. 0
D. -3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Ta có:
y ' = − 3 x 2 + 4 x ; y ' = 1 ⇔ − 3 x 2 + 4 x = 1 ⇔ x = 1 x = 1 3 .
Khi x = 1, tiếp tuyến có phương trình y = x + 2 trùng với đường thẳng y = x + 2.
Khi x = , tiếp tuyến có phương trình y = x + 50 27 .
Đáp án D
Phương pháp:
+) Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x o .
+) Tìm giao điểm của tiếp tuyến với các trục tọa độ.
+) Tính OA, OB, giải phương trình tìm x o → Phương trình tiếp tuyến và kết luận.
Chọn: D
Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x 0 là:
Cho x = 0
Cho y = 0
∆ O A B c â n t ạ i O ⇔ O A = O B
Với x 0 = - 2
Gọi x 0 , y 0 là tọa độ tiếp điểm của đồ thị hàm số (C ).
- Đường thẳng (d'): x + 9y + 2013 = 0
có hệ số góc
- Vì tiếp tuyến vuông góc với đường thẳng d’ nên:
→ Bài toán trở thành viết phương trình tiếp tuyến biết hệ số góc của tiếp tuyến là 9.
- Theo 4) có hai tiếp tuyến có hệ số góc k = 9 là:
y = 9x – 4 và y = 9x + 28.