K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

2 tháng 7 2019

Đáp án là A

và AC bằng khoảng cách giữa B và (AA’C’C) và bằng 2 lần khoảng cách từ H tới (AA’C’C) và bằng 2HQ.

6 tháng 9 2017

Chọn A

11 tháng 1 2018

Chọn đáp án A

7 tháng 2 2017

Đáp án là A

14 tháng 4 2018

9 tháng 11 2017

Đáp án A.

Gọi H là trung điểm của AB

14 tháng 12 2018

Chọn D

NV
15 tháng 3 2022

Gọi D là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}AD\perp BC\\AD=\dfrac{a\sqrt{3}}{2}\end{matrix}\right.\)

Gọi E là trung điểm BD \(\Rightarrow\) HE là đường trung bình tam giác ABD

\(\Rightarrow\left\{{}\begin{matrix}HE||AD\Rightarrow HE\perp BC\\HE=\dfrac{1}{2}AD=\dfrac{a\sqrt{3}}{4}\end{matrix}\right.\)

Mà \(B'H\perp\left(ABC\right)\Rightarrow B'H\perp BC\Rightarrow BC\perp\left(B'HE\right)\)

\(\Rightarrow\widehat{B'EH}\) là góc giữa (BCC'B') và đáy

\(\Rightarrow\widehat{B'HE}=60^0\)

\(\Rightarrow B'H=HE.tan60^0=\dfrac{3a}{4}\)

\(AA'||BB'\Rightarrow AA'||\left(BCC'B'\right)\Rightarrow d\left(AA';BC\right)=d\left(AA';\left(BCC'B'\right)\right)=d\left(A;\left(BCC'B'\right)\right)\)

Mà H là trung điểm AB \(\Rightarrow AB=2HB\Rightarrow d\left(A;\left(BCC'B'\right)\right)=2d\left(H;\left(BCC'B'\right)\right)\)

Từ H kẻ \(HK\perp B'E\)

Do \(BC\perp\left(B'HE\right)\Rightarrow\left(BCC'B'\right)\perp\left(B'HE\right)\)

 Mà B'E là giao tuyến (B'HE) và (BCC'B')

\(\Rightarrow HK\perp\left(BCC'B'\right)\Rightarrow HK=d\left(H;\left(BCC'B'\right)\right)\)

Hệ thức lượng:

\(\dfrac{1}{HK^2}=\dfrac{1}{B'H^2}+\dfrac{1}{HE^2}\Rightarrow HK=\dfrac{B'H.HE}{\sqrt{B'H^2+HE^2}}=\dfrac{3a}{8}\)

\(\Rightarrow d\left(AA';BC\right)=2HK=\dfrac{3a}{4}\)

NV
15 tháng 3 2022

undefined

2 tháng 10 2018

Đáp án B.

Do H là trung điểm AB nên  d B ; A C C ' A ' d H ; A C C ' A ' = B A H A = 2

  ⇒ d B ; A C C ' A ' = 2 d d H ; A C C ' A '

Ta có A H ' ⊥ A B C  nên  A A ' , ( A B C ) ⏜ = A ' A , H A ⏜ = A ' A H ⏜ = 60 °

Gọi D là trung điểm của AC thì B D ⊥ A C .

 Kẻ  H E ⊥ A C , E ∈ A C → H E / / B D

Ta có A C ⊥ A ' H A C ⊥ H E ⇒ A C ⊥ A ' H E ⊥ A C C ' A '  

Trong A ' H E  kẻ  H K ⊥ A ' E , K ∈ A ' E ⇒ H K ⊥ A C C ' A '

Suy ra

d H ; A C C ' A ' = H K ⇒ 2 d B ; A C C ' A ' = 2 H K

Ta có  B D = 2 a 3 2 = a 3 ⇒ H E = 1 2 B D = a 3 2

Xét tam giác vuông A ' A H  có  A H ' = A H . tan 60 ° = a 3

Xét tam giác vuông  A ' H E có   1 H K 2 = 1 A ' H 2 + 1 H E 2 = 1 a 3 2 + 1 a 3 2 2 = 5 3 a 2 ⇒ H K = a 15 5 .

Vậy d B ; A C C ' A ' = 2 H K = 2 a 15 5