K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2019

5 tháng 10 2018

5 tháng 9 2019

6 tháng 7 2017

Phương pháp

+) Gọi P là trung điểm của AB. Chứng minh tam giác MNP vuông tại P.

+) Áp dụng định lý Pytago trong tam giác vuông MNP tính MN.

 

Cách giải

Bài 3: 

a: Xét hình thang ABCD có 

M là trung điểm của AD
N là trung điểm của BC

Do đó: MN là đường trung bình của hình thang ABCD

Suy ra: \(MN=\dfrac{AB+CD}{2}=7,5\left(cm\right)\)

26 tháng 12 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Hai tam giác ABC và BAD bằng nhau ( c.c.c) nên có các đường trung tuyến tương ứng bằng nhau: CM = DM

Ta có tam giác MCD cân tại M, do đó MN ⊥ CD vì N là trung điểm của CD. Tương tự ta chứng minh được NA = NB và suy ra MN ⊥ AB. Mặt phẳng (CDM) không vuông góc với mặt phẳng (ABN) vì (CDM) chứa MN vuông góc với chỉ một đường thẳng AB thuộc (ABN) mà thôi.