K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

28 tháng 11 2023

1: Thay x=1 và y=-1 vào (d), ta được:

\(1\left(m-2\right)+m+1=-1\)

=>2m-1=-1

=>m=0

Khi m=0 thì (d): \(y=\left(0-2\right)x+0+1=-2x+1\)

2: Để (d)//(d') thì \(\left\{{}\begin{matrix}m-2=-3\\m+1< >1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m< >0\end{matrix}\right.\)

=>m=-1

3:

(d): y=(m-2)x+m+1

=>(m-2)x-y+m+1=0

Khoảng cách từ O đến (d) là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-2\right)+0\cdot\left(-1\right)+m+1\right|}{\sqrt{\left(m-2\right)^2+\left(-1\right)^2}}=\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}\)

Để d(O;(d))=1 thì \(\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}=1\)

=>\(\sqrt{\left(m-2\right)^2+1}=\sqrt{\left(m+1\right)^2}\)

=>\(\left(m-2\right)^2+1=\left(m+1\right)^2\)

=>\(m^2-4m+4+1=m^2+2m+1\)

=>-4m+5=2m+1

=>-6m=-4

=>m=2/3(nhận)

1: Thay x=1 và y=1 vào (d), ta được:

2m-1=-1

hay m=0

10 tháng 3 2023

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)

23 tháng 11 2023

loading...

loading...

loading...

h: Khi m=3 thì \(y=\left(3-2\right)x+3+1=x+4\)

Gọi \(\alpha\) là góc tạo bởi đồ thị hàm số y=x+4 với trục Ox

\(tan\alpha=a=1\)

=>\(\alpha=45^0\)

y=x+4

=>x-y+4=0

Khoảng cách từ O(0;0) đến đường thẳng x-y+4=0 là:

\(\dfrac{\left|0\cdot1+0\cdot\left(-1\right)+4\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)

 

23 tháng 11 2023

a: Để (1) là hàm số bậc nhất thì \(m-2\ne0\)

=>\(m\ne2\)

b: Để (1) đồng biến thì m-2>0

=>m>2

c: Khi m=1 thì \(y=\left(1-2\right)x+1+1=-x+2\)

loading...

d: Thay x=2 và y=1 vào (1), ta được:

\(2\left(m-2\right)+m+1=1\)

=>2m-4+m=0

=>3m-4=0

=>3m=4

=>\(m=\dfrac{4}{3}\)

e: Để (1)//y=3x+2 thì \(\left\{{}\begin{matrix}m-2=3\\m+1< >2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=3\\m< >1\end{matrix}\right.\)

=>m=3

f: Để (1) tạo với trục Ox một góc tù thì m-2<0

=>m<2

g: Thay x=0 vào y=5x+6, ta được:

\(y=5\cdot0+6=6\)

Thay x=0 và y=6 vào (1), ta được:

\(0\left(m-2\right)+m+1=6\)

=>m+1=6

=>m=5

4 tháng 12 2018

a, (1) là hàm số bậc nhất khi \(\dfrac{m-1}{m+1}\ne0\Leftrightarrow m\ne\pm1\)

b, (1) là hàm số nghịch biến khi \(\dfrac{m-1}{m+1}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-1>0\\m+1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m-1< 0\\m+1>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\\\left\{{}\begin{matrix}m< 1\\m>-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}1< m< -1\left(L\right)\\-1< m< 1\left(TM\right)\end{matrix}\right.\)

c, (1) đi qua A(1;2) \(\Rightarrow x=1,y=2\)thay vào (1) ta có: \(\dfrac{m-1}{m+1}+m+2=2\)\(\Leftrightarrow\dfrac{m-1}{m+1}+m=0\Leftrightarrow\dfrac{m-1+m^2+m}{m+1}=0\)\(\Leftrightarrow\dfrac{m^2+2m-1}{m+1}=0\)\(\Leftrightarrow m^2+2m-1=0\Leftrightarrow\left[{}\begin{matrix}m=1-\sqrt{2}\\m=-1-\sqrt{2}\end{matrix}\right.\)(cái này là mình ấn máy tính ra nhé)

d, (1) song song với y = 2x - 1 \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m-1}{m+1}=2\\m+2\ne-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-1=2m+2\\m\ne-3\end{matrix}\right.\Leftrightarrow m=-3\left(L\right)\)

Vậy không có giá trị m phù hợp

4 tháng 3 2021

a, Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m-1>0\\\Delta'=m^2-4m+4+m-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left(m-\dfrac{3}{2}\right)^2< -\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\) vô nghiệm

Vậy không tồn tại giá trị m thỏa mãn

b, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-1\right)x^2+2\left(m-2\right)x-1< 0\) có nghiệm với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=m^2-3m+3< 0\end{matrix}\right.\)

\(\Leftrightarrow\) vô nghiệm

Vậy không tồn tại giá trị m thỏa mãn