K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

Chọn B

26 tháng 12 2017

Đáp án B

Ta có y ' = 3 ( m - 1 ) + ( 2 m + 1 ) sin   x  để hàm số nghịch biến trên  ℝ thì y ' ≤ 0  với mọi x xét BPT

3 ( m - 1 ) + ( 2 m + 1 ) sin   x ≤ 0 Nếu m = - 1 2  BPT luôn đúng. Với m > - 1 2  BPT ⇔ sin   x ≤ 3 ( 1 - m ) 2 m + 1  để hàm số luôn nghịch biến với mọi x thì  3 ( 1 - m ) 2 m + 1 ≥ 1 ⇒ - 1 2 < m ≤ 2 5 . Với m < - 1 2  BPT ⇔ sin   x ≥ 3 ( 1 - m ) 2 m + 1  để hàm số luôn nghịch biến với mọi x thì  3 ( 1 - m ) 2 m + 1 ≤ - 1 ⇒ m < - 1 2

Kết hợp hai trường hợp ta có  m ≤ 2 5

26 tháng 12 2017

22 tháng 4 2017

Chọn A

Tập xác định: D =  ℝ . Ta có  Để hàm số nghịch biến trên  thì 

22 tháng 10 2017

Đáp án B

Ta có n P → = (m2 - 2m; 1; m - 1). Mặt phẳng (P) song song với trục Ox khi và chỉ khi

Từ đó ta được m=2.

 

Vậy đáp án B là đáp án đúng.

16 tháng 2 2019

Đáp án B

Ta có n p →  = (1;  m 2  - 2m; m - 1). Mặt phẳng (P) song song với trục Oy khi và chỉ khi

1 tháng 10 2018

Đáp án đúng : A

17 tháng 12 2017

Đáp án B

5 tháng 12 2018

1 tháng 10 2019

Ta co:\(\Sigma\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}=\Sigma\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)Ta lai co:

\(\Sigma x+\Sigma\frac{1}{x}=\Sigma\left(x+\frac{1}{4x}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3+\frac{3}{4}.\frac{9}{x+y+z}\ge3+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)

Dau '=' xay ra khi \(x=y=z=\frac{1}{2}\)

Vay \(P_{min}=\frac{15}{2}\)khi \(x=y=z=\frac{1}{2}\)

1 tháng 10 2019

mấy câu trên bn giải đc k ak ? Giải giúp mik vs :3