\(\left(2\left|x\right|-1\right)^3=216\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy trong tích có thừa số ( 216 - 6\(^3\)) = 216 - 216 = 0 nên tích bằng 0
Vậy M = 0 + ( 216 x 64 + 216 x 36 )
M = 216 . ( 64 + 36 )
M = 216 x 100
M = 21600
a: \(\Leftrightarrow\left(-\dfrac{1}{6}\right)^{x-2}=\dfrac{1}{216}\)
\(\Leftrightarrow x\in\varnothing\)
b: \(\Leftrightarrow\left[\left(\dfrac{1}{6}\right)^{\left(x-5\right)\left(x-1\right)}\right]=\dfrac{1}{36}\)
=>(x-5)(x-1)=2
=>x2-6x+5-2=0
=>x2-6x+4=0
hay \(x\in\left\{3+\sqrt{5};3-\sqrt{5}\right\}\)
\(\left(\frac{1}{216}-\frac{1}{1^3}\right)\) Ko phải là \(\left(\frac{1}{216}-\frac{1}{13}\right)\) nha
Trong tích trên có thừa số \(\frac{1}{216}-\frac{1}{6^3}=\frac{1}{216}-\frac{1}{216}=0\)
Vậy biểu thức trên bằng 0. Chúc bạn học tốt.
a)\(3^{x-1}+7.3^{x-1}=216\)
\(1.3^{x-1}+7.3^{x-1}=216\)
\(3^{x-1}.\left(1+7\right)=216\)
\(3^{x-1}.8=216\)
\(3^{x-1}=216:8\)
\(3^{x-1}=27\)
\(3^{x-1}=3^3\)
\(x-1=3\)
\(x=3+1\)
\(x=4\)
a)\(3^{x-1}+7.3^{x-1}=216\)
\(\left(7+1\right).3^{x-1}=216\)
\(8.3^{x-1}=216\)
\(3^{x-1}=216:8\)
\(3^{x-1}=27\)
\(3^{x-1}=3^3\)
\(\Rightarrow x-1=3\)
\(x=3+1\)
\(\Rightarrow x=4\)
b)\(\left(x-2\right)^8=\left(x-2\right)^{10}\)
\(\left(\pm1\right)^8=\left(\pm1\right)^{10}\)
TH1:\(x-2=1\)
\(\Rightarrow x=3\)
TH2:\(x-2=-1\)
\(\Rightarrow x=1\)
a nhân loạn lên, c 813=(34)3=312:3x....
d)NHớm x-7x+1 vào
b. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Theo t/c dảy tỉ số = nhau:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
=> \(\frac{x^2}{4}=\frac{1}{4}\Rightarrow x^2=\frac{1}{4}.4=1=1^2=\left(-1\right)^2\Rightarrow x=\)+1
=> \(\frac{y^2}{16}=\frac{1}{4}\Rightarrow y^2=\frac{1}{4}.16=4=2^2=\left(-2\right)^2\Rightarrow y=\)+2
=> \(\frac{z^2}{36}=\frac{1}{4}\Rightarrow z^2=\frac{1}{4}.36=9=3^2=\left(-3\right)^2\Rightarrow z=\)+3
Vậy có 2 cặp (x;y;z) là: (1;2;3) và (-1;-2;-3).
a. Áp dụng t/c tỉ số = nhau làm tương tự.
a) \(A=xy-3xy\left(1+x-y\right)+x^2\left(x+1\right)-y^2\left(y-1\right)\)
\(A=xy-3xy-3x^2y+3xy^2+x^3+x^2-y^3+y^2\)
\(A=x^2-2xy+y^2+x^3-3x^2y+3xy^2-y^3\)
\(A=\left(x-y\right)^2+\left(x-y\right)^3\)
b) Khi x-y =5
<=> x= 5+y
Thay vào bt A ,ta được:
\(A=\left(5+y-y\right)^2+\left(5+y-y\right)^3\)
\(A=5^2+5^3=25+125=150\)
\(A=xy-3xy\left(1+x-y\right)+x^2\left(x+1\right)-y^2\left(y-1\right)\)
\(A=xy-3xy-3x^2y+3xy^2+x^3+x^2-y^3+y^2\)
\(A=\left(x-y\right)^3+\left(x-y\right)^2\)
\(A=\left(x-y\right)^2\left(x-y+1\right)\)
b) Với x - y = 5 ta có
\(A=5^2.6=150\)
\(\Leftrightarrow2\left|x\right|-1=6\\ \Leftrightarrow\left|x\right|=\dfrac{5}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)