Giải hệ phương trình:
\(\int^{x+y+z=1}_{x^4+y^4+z^4=1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ê cu bài phần a nè
(2)<=>X2(1-X3)+y2(1-y3)=0 (3)
từ (1) => 1-x3=y3;1-y3=x3
thay vào (3)ta được :x2.y3+y2.x3=0
<=>x2.y2.(x+y)=0 (tới đây tự lo liệu)
Sửa lại bài bạn ở trên:
Ta có: x4 + y4 + z4 \(\ge\)(xy)2 + (yz)2 + (zx)2
\(\ge\)xzy2 + xyz2 + yzx2 = xyz(x + y + z) = xyz
Dấu = xảy ra khi x = y = z
Kết hợp với x + y + z = 1
\(\Rightarrow x=y=z=\frac{1}{3}\)
đề => \(x^4+y^4+z^4=xyz\left(x+y+z\right)\left(1\right)\)
ta có bđt \(a^2+b^2+c^2\ge ab+bc+ac\)
áp dụng ta được \(\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge xy.yz+xy.zx+yz.xz=xyz\left(x+y+z\right)\)
dấu "=" xảy ra <=> x=y=z
mà x+y+z=1
=>x=y=z=1/3
(nếu cần cm bđt phụ thì nói mình nha)
Ta có :
\(\hept{\begin{cases}x+y+z=1\\x^4+y^4+z^4=xyz\end{cases}}\)
\(\Rightarrow\)\(x^4+y^4+z^4=xyz.\left(x+y+z\right)\)
Áp dụng bất đẳng thức \(a^2+b^2+c^2\ge ab+bc+ca\), dấu "=" xảy ra khi \(a=b=c\)TA CÓ :
\(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge x^2y^2+y^2z^2+z^2x^2=\ge xy.yz+yz.zx+zx.xy\)\(=xyz.\left(x+y+z\right)\)
\(\Rightarrow\)\(x=y=z\)
Mà \(x+y+z=1\)\(\Rightarrow\)\(x=y=z=\frac{1}{3}\)
Vậy hệ phương trình có nghiệm \(\left(x;y;z\right)=\left(\frac{1}{3};\frac{1}{3};\frac{1}{3}\right)\)
Rõ ràng \(x=y=z=0\) là nghiệm của hệ
Với \(xyz\ne0\), Ta có
\(y=\frac{2x^2}{x^2+1}\le\frac{2x^2}{2x}=x\)
\(z=\frac{3y^3}{y^4+y^2+1}\le\frac{3y^3}{3y^2}=y\)
\(x=\frac{4z^4}{z^6+z^4+z^2+1}\le\frac{4z^4}{4z^3}=z\)
Suy ra \(y\le x\le z\le y\Rightarrow x=y=z\)
Từ pt thứ nhất của hệ suy ra
\(\frac{2x^2}{x^2+1}=x\Leftrightarrow2x=1=x^2\)( vì \(x\ne0\))\(\Leftrightarrow x=1\)
Vậy hệ pt có hai nghiệm \(\left(0,0,0\right)\)và \(\left(1,1,1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=2\\yz+y+z+1=5\\zx+z+x+1=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=5\\\left(z+1\right)\left(x+1\right)=10\end{matrix}\right.\) (1)
Nhân vế với vế: \(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=100\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=10\) (2)
Chia vế cho vế của (2) cho từng pt của (1):
\(\Rightarrow\left\{{}\begin{matrix}z+1=5\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Rightarrow\left(x;y;z\right)=\left(1;0;4\right)\) (loại)
Hệ vô nghiệm do \(y>0\)
\(\hept{\begin{cases}x+y+z=1\\x^4+y^4+z^4=xyz\end{cases}}\)
\(\Rightarrow\)\(x^4+y^4+z^4=xyz.\left(x+y+z\right)\)
Áp dụng bất đẳng thức \(a^2+b^2+c^2\ge ab+bc+ca\)dấu "=" xảy ra khi \(a=b=c\)ta có :
\(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge x^2y^2+y^2z^2+z^2x^2\ge xy.yz+yz.zx+zx.xy=xyz.\left(x+y+z\right)\)\(\Rightarrow\)\(x=y=z\)
Mà \(x+y+z=1\)\(\Rightarrow\)\(x=y=z=\frac{1}{3}\)
Vậy hệ phương trình có nguyệm \(\left(x;y;z\right)=\left(\frac{1}{3};\frac{1}{3};\frac{1}{3}\right)\)
( mình mới lớp 7 à nên có làm sai thì thông cảm giùm nha )
(0;0;1)
đoán vậy
khó quá ( mới măm xongg đã thế này thì sống làm sao?)
ừ An cũng nhẩm được nghiệm là vậy rồi =))
mới ăn xong mà bài vầy là bình thường hoy nha =))
hôm sau đúng vào giao thừa cho thêm vài bài khó hơn thế này nhiều he he :D