K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

1. A B C D F 1 2 2 1 1 2. A B H D M C

1.Lấy F trên AC sao cho AB = AF mà AB < AC => AF < AC => F nằm giữa A,C

\(\Delta ADB,\Delta ADF\)có AD chung ; AB = AF ;\(\widehat{A_1}=\widehat{A_2}\)(AD là phân giác góc BAC)\(\Rightarrow\Delta ADB=\Delta ADF\left(c.g.c\right)\)

\(\Rightarrow\widehat{D_1}=\widehat{D_2}\); DB = DF mà\(\widehat{F_1}>\widehat{D_1};\widehat{D_2}>\widehat{C}\)(\(\widehat{F_1};\widehat{D_1}\)lần lượt là góc ngoài\(\Delta ADF,\Delta ADC\))nên\(\widehat{F_1}>\widehat{C}\)

\(\Delta DFC\)\(\widehat{F_1}>\widehat{C}\)nên DC > DF = DB.Vậy BD < CD

2.Theo chứng minh câu 1,ta được BD < CD

\(\Rightarrow BC=BD+CD=2BD+CD-BD\Rightarrow2BD< BC\Rightarrow BD< \frac{BC}{2}\left(=BM\right)\)

=> D nằm giữa B,M => AD nằm giữa AB,AM (1)

\(\Delta ABC\)có AB < AC nên\(\widehat{B}>\widehat{C}\)\(\widehat{BAH}=90^0-\widehat{B};\widehat{CAH}=90^0-\widehat{C}\)(vì\(\Delta AHB,\Delta AHC\)vuông tại H)

\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)

\(\Rightarrow\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=2\widehat{BAH}+\widehat{CAH}-\widehat{BAH}\Rightarrow2\widehat{BAH}< \widehat{BAC}\Rightarrow\widehat{BAH}< \frac{\widehat{BAC}}{2}\left(=\widehat{BAD}\right)\)

=> AH nằm giữa AB,AD (2).Từ (1) và (2),ta có đpcm

3 tháng 8 2018

làm như ngu

8 tháng 4 2022

a)Xét △ABC vuông tại A (gt)

=> BC2 = AB2 + AC2 (định lý Pytago)

     BC2 = 52 + 122 = 25 + 144 = 169

=> BC = \(\sqrt{169}\) = 13 cm

Xét △ABC có BF là tia phân giác của góc ABC (gt)

=>\(\dfrac{AF}{AB}\) = \(\dfrac{FC}{BC}\) (tính chất đường phân giác)

=>\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) và AF + FC = AC = 12

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) = \(\dfrac{AF+FC}{5+13}\) = \(\dfrac{AC}{18}\) = \(\dfrac{2}{3}\)

=> AF = \(\dfrac{2}{3}\) x 5 = 3,33 cm và FC = \(\dfrac{2}{3}\) x 13 = 8,67 cm

b)Xét △ABF và △HBE có:

góc ABF bằng góc HBE (BF là tia phân giác của góc ABC)

góc BAF bằng góc BHE bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)

=> △ABF ∼ △HBE (g.g)

c) Vì △ABF ∼ △HBE (câu b)

=> góc BFA bằng góc BEH

mà góc AEF bằng góc BEH (2 góc đối đỉnh)

=> góc BFA bằng góc AEF

=> △AEF cân tại A

d)Xét △ABC và △AHB có:

góc ABC chung

góc BAC bằng góc BHA bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)

=> △ABC ∼ △HBA (g.g)

=> \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (1)

Xét △ABH có BE là tia phân giác của góc ABC (gt)

=>\(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (2) (tính chất đường phân giác)

Từ (1), (2) => \(\dfrac{AB}{BC}\) = \(\dfrac{HE}{AE}\)

=> AB.AE=BC.HE(chắc vậy?)

8 tháng 4 2022

câu d sai đề à????

1 tháng 3 2020

A B C H E F I K 1 1 1

a) Áp dụng địnhh lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=4,8\left(cm\right)\)

b)  Xét tam giác AEH và tam giác AHB có:

\(\hept{\begin{cases}\widehat{A1}chung\\\widehat{AEH}=\widehat{AHB}=90^0\end{cases}\Rightarrow\Delta AEH~\Delta AHB\left(g.g\right)}\)

c) Xét tam giác AHC và tam giác AFH có:

\(\hept{\begin{cases}\widehat{HAC}chung\\\widehat{AHC}=\widehat{AFH}=90^0\end{cases}\Rightarrow\Delta AHC~\Delta AFH\left(g.g\right)}\)

\(\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\)( các đoạn t.ứng tỉ lệ ) 

\(\Rightarrow AH^2=AC.AF\)

d) Xét tứ giác AEHF có:

\(\hept{\begin{cases}\widehat{AEH}=90^0\\\widehat{EAF}=90^0\\\widehat{AFH}=90^0\end{cases}\Rightarrow AEHF}\)là hình chữ nhật ( dhnb)

\(\Rightarrow EF\)là đường phân giác của góc AEH và AH là đường phân giác của góc EHF (tc hcn )

\(\Rightarrow\widehat{E1}=\frac{1}{2}\widehat{AFH},\widehat{H1}=\frac{1}{2}\widehat{EHF}\)

Mà \(\widehat{AEH}=\widehat{EHF}\left(tc\right)\)

\(\Rightarrow\widehat{E1}=\widehat{H1}\) (3)

Vì tam giác AHC vuông tại H nên \(\widehat{HAC}+\widehat{C}=90^0\)( 2 góc phụ nhau ) (1)

Vì tam giác AFH vuông tại F nên \(\widehat{HAF}+\widehat{H1}=90^0\)( 2 góc phụ nhau ) (2)

Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{H1}\)(4)

Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{E1}\)

Xét tam giác ABC và tam giác AFE có:

\(\hept{\begin{cases}\widehat{A}chung\\\widehat{C}=\widehat{E1}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta AFE\left(g.g\right)}\)

e) vÌ \(\Delta ABC~\Delta AFE\left(cmt\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AF}{AE}\)( các đoạn t.ứng tỉ lệ ) (5)

Xét tam giác ABC có AK là đường phân giác trong của tam giác ABC

\(\Rightarrow\frac{BK}{KC}=\frac{AB}{AC}\)( tc)  (6)

Xét tam giác AEF có AI là đường phân giác trong của tam giác AEF

\(\Rightarrow\frac{IF}{IE}=\frac{AF}{AE}\)(tc)  (7)

Từ (5) ,(6) và (7) \(\Rightarrow\frac{BK}{KC}=\frac{IF}{IE}\)

\(\Rightarrow KB.IE=KC.IF\left(đpcm\right)\)

16 tháng 3 2022

có điểm kìa

K trả lời thì thôi đừng nói như vậy người khác k hiểu

DD
9 tháng 6 2021

d) Dễ thấy \(E\)là trực tâm của tam giác \(ACE\)(do là giao của hai đường cao \(DK,CH\)). 

suy ra \(AE\perp CD\).

Để chứng minh \(BM//CD\)ta sẽ chứng minh \(AE\perp BM\).

Ta có: 

\(\widehat{CAH}=\widehat{CBA}\)(vì cùng phụ với góc \(\widehat{ACB}\))

suy ra \(\widehat{CAE}=\widehat{ABM}\)

mà \(\widehat{CAE}+\widehat{EAB}=\widehat{CAB}=90^o\Rightarrow\widehat{ABM}+\widehat{EAB}=90^o\Rightarrow\widehat{AMB}=90^o\)

do đó \(BM\perp AE\).

Từ đây ta có đpcm.