K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

Đáp án B

Ta có: llpUUTsV6IMw.png.

Cho kyCb4Dn1GNKz.pngzI71X1B6YdmI.png

6kFAb2XIZbfw.png.

lAUzqb4H4kBf.png; Qi0UwhOd3Ycw.png; DUi4f41rqKl1.png.

 

Vậy giá trị lớn nhất của hàm số là 3

1 tháng 7 2018

19 tháng 9 2019

Đáp án C

Xét trên 0 , π  ta có   y ' = 1 - 2 sin   x ⇒ y ' = 0 ⇔ sin   x = 1 2 ⇔ x = π 4 ta có BBT như sau

Như vậy GTLN của hàm số là  π 4 + 1

31 tháng 1 2018

26 tháng 9 2017

Chọn B

Vì y =  a x 3 + c x + d ,   a ≠ 0  là hàm số bậc ba và có  m i n x ∈ - ∞ ; 0   f ( x )   =   f ( - 2 ) nên a < 0 và y' = 0   có hai nghiệm phân biệt.

Ta có  có hai nghiệm phân biệt  ⇔ ac < 0

Vậy với a < 0, c > 0 thì y' = 0 có hai nghiệm đối nhau 

Từ đó suy ra


⇔ c = -12a

Ta có bảng biến thiên

Ta suy ra 

29 tháng 9 2017

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy GTLN của hàm số trên [0; 3] là 250 27  đạt được khi x = 5/6. Chọn đáp án C.

13 tháng 12 2018

31 tháng 8 2019

Chọn B

Ta có:

biến thiên của hàm số f(x) trên đoạn [0;4]

Nhìn vào bảng biến thiên ta thấy 

Ta có f(2) + f(4) = f(3) + f(0)  ⇔ f(0) - f(4) = f(2) - f(3) > 0.

Suy ra: f(4) < f(0). Do đó 

Vậy giá trị nhỏ nhất và lớn nhất của f(x) trên đoạn [0;4] lần lượt là: f(4), f(2).

17 tháng 2 2017

Dựa vào bảng xét dấu của f '(x) ta có bảng biến thiên của hàm số  trên đoạn [0;5] như sau

Suy ra Và 

Ta có 

Vì f(x)  đồng biến trên đoạn [2;5] nên 

⇒ f(5)>f(0)

Vậy

Chọn đáp án D.

9 tháng 9 2018

Chọn A

Từ đồ thị của hàm số y = f'(x) ta có bảng biến thiên của hàm số y = f(x) trên đoạn [-1;2] như sau

Nhận thấy

Để tìm  ta so sánh f(-1) và f(2)

Theo giả thiết, 

Từ bảng biến thiên , ta có f(0) - f(1) > 0. Do đó f(2) - f(-1) > 0