Tính S=1+1/2*(1+2)+1/3*(1+2+3)+...+1/100*(1+2+3+...+100) bằng bao nhiêu?
Giúp nhanh nha! mình đang cần gấp!!!!!!!!!!!!
Cảm ơn trước
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
100-3(x-1)2=52
3(x-1)2=100-52
3(x-1)2=48
(x-1)2=48:3
(x-1)2=16
(x-1)2=42=(-4)2
=> x-1=4 hoặc x-1=-4
TH1:
x-1=4
x=4+1
x=5
TH2:
x-1=-4
x=-4+1
x=-3
Vậy x=5 hoặc x=-3
100 - 3(x - 1)2 = 52
<=> 3(x - 1)2 = 48
<=> (x - 1)2 = 16
<=> (x - 1)2 = 42 = (-4)2
<=> \(\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}}\)
<=> \(\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)
Ta có: \(2^{150}=\left(2^3\right)^{50}=8^{50}\)
\(3^{100}=\left(3^2\right)^{50}=9^{50}\)
=>\(8^{50}< 9^{50}\)
=>\(2^{150}< 3^{100}\)
Ta có:
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow4A=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}=3-\frac{203}{3^{100}}\)
\(\Rightarrow A=\frac{3-\frac{203}{3^{100}}}{4}=\frac{3}{4}-\frac{203}{3^{100}.4}< \frac{3}{4}\Rightarrowđpcm\)
Vậy \(A< \frac{3}{4}\)
\(D=\frac{5}{1+2+3}+\frac{5}{1+2+3+4}+...+\frac{5}{1+2+...+100}\)
\(\Rightarrow D=5\left(\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+...+100}\right)\)
\(\Rightarrow D=5\left(\frac{1}{\frac{4.3}{2}}+\frac{1}{\frac{5.4}{2}}+...+\frac{1}{\frac{101.100}{2}}\right)\)
\(\Rightarrow D=5\left(\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{100.101}\right)\)
\(\Rightarrow D=10\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow D=10\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(\Rightarrow D=\frac{10}{3}-\frac{10}{101}=\frac{980}{303}\)
I don't now
or no I don't
..................
sorry