K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

29 tháng 8 2019

Đáp án B

Ta có

.

.

Hình bên dưới là đồ thị của hàm số .

Dựa vào hình vẽ ta thấy đồ thị hàm số cắt nhau tại 2 điểm phân biệt, đồng thời khi hoặc , khi .

Do đó đổi dấu qua , .

Vậy hàm số g(x) có hai điểm cực trị.

27 tháng 7 2018

Đáp án D

20 tháng 1 2017

Đáp án B

Phương pháp: Lập bảng biến thiên của g(x) và đánh giá số giao điểm của đồ thị hàm số y = g(x) và trục hoành.

Cách giải: 

Xét giao điểm của đồ  thị  hàm sốy = f’(x) và đường thẳng y = -x ta thấy, hai đồ  thị  cắt nhau tại ba điểm có hoành độ là: -2;2;4 tương ứng với 3 điểm cực trị của y = g(x).

Bảng biến thiên:

Dựa vào bảng biến thiên ta thấy  => phương trình g(x) = 0 không có nghiệm

16 tháng 2 2019

Chọn D

Xét hàm số . Khi đó hàm số liên tục trên các đoạn , và có là một nguyên hàm của hàm số .

Do đó diện tích hình phẳng giới hạn bởi

.

nên .

Diện tích hình phẳng giới hạn bởi

.

nên .

13 tháng 7 2021

làm hộ em cảm ơn

 

14 tháng 7 2021

chào trần đức huy nhé

17 tháng 12 2019

Chọn B

Ta có g’(x) = f’(x) + 1.

 Đồ thị của hàm số y= g’(x) là phép tịnh tiến đồ thị của hàm số y= f’(x) theo phương song song  với Oy lên trên 1 đơn vị.

Khi đó đồ thị hàm số y= g’(x) cắt trục hoành tại hai điểm phân biệt.

=> Hàm số y= g(x) có 2 điểm cực trị.

9 tháng 2 2019

Ta có 

Suy ra đồ thị của hàm số g’ (x)  là phép tịnh tiến đồ thị hàm số y= f’ (x)  theo phương Oy xuống dưới đơn vị.

Ta có và dựa vào đồ thị của hàm số y= f’ (x),  ta suy ra đồ thị của hàm số g’ (x)  cắt trục hoành tại 4 điểm.

Chọn D.

2 tháng 11 2017


24 tháng 1 2017