7⋮(3x +1)
Em cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x - 7 = (-4) + 21
3x - 7 = 17
3x = 17 + 7
3x = 24
x = 24 : 3
x = 8
chả bk đúng ko nhưng chúc bạn học tốt !!!
9x2 - 4 = (2x - 1)(3x + 2)
=> (3x - 2)(3x + 2) - (2x - 1)(3x + 2) = 0
=> (3x + 2)(3x - 2 - 2x + 1) = 0
=> (3x + 2)(x - 1) = 0
=> \(\orbr{\begin{cases}3x+2=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=1\end{cases}}\)
Bài 7:
a: Xét tứ giác EOBM có
\(\widehat{OEM}+\widehat{OBM}=90^0+90^0=180^0\)
=>EOBM là tứ giác nội tiếp
=>E,O,B,M cùng thuộc một đường tròn
b: ΔAON cân tại O
mà OK là đường cao
nên OK là phân giác của góc AON
Xét ΔOAK và ΔONK có
OA=ON
\(\widehat{AOK}=\widehat{NOK}\)
OK chung
Do đó: ΔOAK=ΔONK
=>\(\widehat{OAK}=\widehat{ONK}=90^0\)
=>KA là tiếp tuyến của (O)
c: Xét (O) có
DN,DB là tiếp tuyến
Do đó: DN=DB và OD là phân giác của góc NOB
=>\(\widehat{NOB}=2\cdot\widehat{NOD}\)
\(\widehat{NOA}+\widehat{NOB}=180^0\)(hai góc kề bù)
\(\Leftrightarrow2\cdot\widehat{KON}+2\cdot\widehat{NOD}=180^0\)
=>\(2\cdot\widehat{KOD}=180^0\)
=>\(\widehat{KOD}=90^0\)
Xét ΔKOD vuông tại O có ON là đường cao
nên \(NK\cdot ND=ON^2\)
mà NK=KA và ND=DB
nên \(KA\cdot DB=ON^2=R^2\) không đổi
Bài 1:
Thay y=2023 vào y=x+1, ta được:
x+1=2023
=>x=2022
Thay x=2022 và y=2023 vào (d'), ta được:
\(2022\left(m-1\right)+m=2023\)
=>2022m-2022+m=2023
=>2023m=4045
=>\(m=\dfrac{4045}{2023}\)
`4(x-6)-x^2 (2+3x)+x(5x-4)+3x^2 (x-1)`
`=4x-24-2x^2 -3x^3 +5x^2-4x+3x^3-3x^2`
`=-24`
\(4\left(x-6\right)-2x\left(2+3x\right)+x\left(5x-4\right)+3x2\left(x-1\right)\\ =4x-24-4x-6x^2+5x^2-4x+6x^2+6x\\ =2x+5x^2-24\)
`a)|2x+1|=5`
`<=>` \(\left[ \begin{array}{l}2x+1=5\\2x+1=-5\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-6\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=2\\x=-3\end{array} \right.\)
`b)|2x+1|=0`
`<=>2x+1=0`
`<=>2x=-1`
`<=>x=-1/2`
`c)|2x+1|=7`
`<=>` \(\left[ \begin{array}{l}2x+1=7\\2x+1=-7\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}2x=6\\2x=-8\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=4\\x=-4\end{array} \right.\)
`d)|2x+5|=|3x-7|`
`<=>` \(\left[ \begin{array}{l}2x+5=3x-7\\2x+5=7-3x\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=12\\5x=2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=12\\x=\dfrac25\end{array} \right.\)
`e)|2x+7|=1`
`<=>` \(\left[ \begin{array}{l}2x+7=1\\2x+7=-1\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}2x=-6\\2x=-8\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=3\\x=-4\end{array} \right.\)
`g)|x-2|+|2x-3|=2`
Nếu `x>=2=>|x-2|=x-2,|2x-3|=2x-3`
`pt<=>x-2+2x-3=2`
`<=>3x-5=2`
`<=>3x=7`
`<=>x=7/3(tm)`
Nếu `x<=3/2=>|x-2|=2-x,|2x-3|=3-2x`
`pt<=>2-x+3-2x=2`
`<=>5-3x=2`
`<=>3x=3`
`<=>x=1(tm)`
Nếu `3/2<=x<=2=>|x-2|=2-x,|2x-3|=2x-3`
`pt<=>2-x+2x-3=2`
`<=>x-1=2`
`<=>x=3(l)`
`h)|x+2|+|1-x|=3x+2`
Vì `VT>=0=>3x+2>=0=>x>=-2/3`
`=>|x+2|=x+2`
`pt<=>x+2+|1-x|=3x+2`
`<=>|1-x|=2x(x>=0)`
`<=>` \(\left[ \begin{array}{l}2x=1-x\\2x=x-1\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}3x=1\\x=-1\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=\dfrac13(TM)\\x=-1(KTM)\end{array} \right.\)
a.
$|2x+1|=5$
\(\Leftrightarrow \left[\begin{matrix}
2x+1=5\\
2x+1=-5\end{matrix}\right.\Leftrightarrow \left[\begin{matrix}
x=2\\
x=-3\end{matrix}\right.\)
b.
$|2x+1|=0$
$\Leftrightarrow 2x+1=0$
$\Leftrightarrow x=-\frac{1}{2}$
c.
$|2x+1|=7$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=7\\ 2x+1=-7\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=3\\ x=-4\end{matrix}\right.\)
Bài 1:
3x+2y=7
\(\Leftrightarrow3x=7-2y\)
\(\Leftrightarrow x=\dfrac{7-2y}{3}\)
Vậy: \(\left\{{}\begin{matrix}y\in R\\x=\dfrac{7-2y}{3}\end{matrix}\right.\)
\(1,3x+2y=7\\ \Leftrightarrow2y=7-3x\left(1\right)\)
Vì \(2y⋮2\)
\(\Leftrightarrow3x-7⋮2\\ \Leftrightarrow3x-9⋮2\\ \Leftrightarrow3\left(x-3\right)⋮2\\ \Leftrightarrow x-3⋮2\\ \Leftrightarrow x.lẻ\)
Đặt \(x=2k+1\left(k\in Z\right)\)
Thay vào (1), ta được :
\(\left(1\right)\Leftrightarrow2y=3\left(2k+1\right)-7\\ \Leftrightarrow2y=6k+3-7\\ \Leftrightarrow2y=6k-4\\ \Leftrightarrow y=3k-2\)
Vậy \(x=2k+1;y=3k-2\left(k\in Z\right)\)
\(2,C_1:\left\{{}\begin{matrix}-2x+y=1\\4x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+2y=2\\4x+5y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}4x+5y=2\\7y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{7}\\y=\dfrac{5}{7}\end{matrix}\right.\\ C_2:\left\{{}\begin{matrix}-2x+y=1\\4x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1+2x\\4x+5y=3\end{matrix}\right.\Leftrightarrow4x+5+10x=3\\ \Leftrightarrow x=-\dfrac{1}{7}\Leftrightarrow y=1-\dfrac{2}{7}=\dfrac{5}{7}\)
\(x\) \(\in\)\(\left\{2;0;-2;\frac{-2}{3}\right\}\)