Phương trình 3.2x + 4.3x +5.4x = 6.5x có tất cả bao nhiêu nghiệm thực?
A. 3
B. 0
C. 2
D. 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(3^x=a\) \(\left(a>0\right)\)
Phương trình \(\Leftrightarrow a^2-4a+m-2=0\) (*)
Yêu cầu bài toán \(\Leftrightarrow\) Phương trình (*) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\a_1+a_2>0\\a_1\cdot a_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4-\left(m-2\right)>0\\4>0\left(t/m\right)\\m-2>0\end{matrix}\right.\) \(\Leftrightarrow\) ...
Chọn đáp án D.
Từ bảng biến thiên trên, ta có bất phương trình đã cho có nghiệm khi và chỉ khi bất phương trình f(t) < 0
Đáp án D
Phương pháp: Sử dụng tính đơn điệu của hàm số, đánh giá số nghiệm của phương trình
Cách giải:
Hàm số nghịch biến trên R => f(x) = 0 có nhiều nhất 1 nghiệm trên R(1)
Ta có: có ít nhất 1 nghiệm
Từ (1), (2) suy ra: phương trình đã cho có duy nhất một nghiệm thực