những người đã trả lời câu hỏi đi thi ioe của mình đều được like hết .ok nhe !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu Nga trả lời được đúng cả 20 câu thì số điểm Nga được là 20 x 5 = 100 điểm
Thực tế Nga được 57 điểm
=> Số điểm Nga bị trừ là 100 - 57 = 43 điểm
Số điểm trừ này là số điểm trừ từ các câu Nga trả lời sai hoặc không trả lời được
Vì lúc đầu ta coi Nga trả lời đúng hết nên mỗi câu sai trừ đi 5 + 2 = 7 điểm; mỗi câu không trả lời trừ đi 5 điểm
Ta có: 7 x số câu sai + 5 x số câu không trả lời được = 43
Thay số câu sai bằng 0;1;2;3;...
=> Số câu sai bằng 4 ; số câu không trả lời là 3
Vậy số câu Nga bỏ qua là 3 câu
Cách 1 :
Giữa đúng và sai thì số điểm lệch nhau cho mỗi bài thi là:
5 + 2 = 7 (điểm)
Giả sử Nga trả lời đúng cả 20 câu hỏi thì tổng số điểm là:
5 x 20 = 100 (điểm)
Số câu 2 điểm sẽ là:
43 : 7 = 6 (câu) dư 1
Do dư 1 điểm (số lẻ) nên số câu trả lời đúng sẽ giảm đi 1 số lẻ nhưng không quá 2x6=12 (điểm).
Số câu trả lời đúng sẽ giảm đi 1 câu (5 điểm) là câu không trả lời.
Số câu giảm đi ở câu trả lời sai là:
(5-1) : 2 = 2 (câu)
Số câu không trả lời là:
1 + 2 = 3 (câu)
Thử lại:
Số câu trả lời sai là: 6 – 2 = 4 (câu)
Số câu trả lời đúng là: 20 – (3 + 4) = 13 (câu)
Tổng số điểm là: 5 x 13 – 4 x 2 = 57 (điểm)
Cách 2:
Giả sử mỗi bài được thêm 2 điểm: Đúng 7 điểm, sai 0 điểm, không trả lời 2 điểm thì tổng số điểm sẽ là:
57 + 2x20 = 97 (điểm)
Gọi d là đúng, s là sai, b là bỏ. Ta được
d + s + b = 20
d.7 + s.0 + b.2 = 97 hay
d.7 + b.2 = 97
Vì 97 là số lẻ mà b.2 là số chẵn nên d.7 là số lẻ hay d lẻ và bé hơn 14 (Vì 14 x 7 = 98>97)
Với :
*. d=13 => 13x7 + bx2 = 97 => b=3 và s = 20 – (13+3) = 4 *. d=11 => 11x7 + bx2 = 97 => b=10 (loại vì 11+10>20)
…………………..
Số bài Nga bỏ qua là 3 bài.
Thử lại :
Bỏ qua : 3 bài x 0 = 0 (điểm)
Đúng : 13 bài x 5 = 65 (điểm)
Sai : 4 bài x 2 = 8 (điểm)
Tổng số điểm : 65 – 8 = 57 (điểm)
Gọi số câu đúng là x; số câu sai là y.
Ta có tổng số câu là 10.
Ta có hệ phương trình:
x + y = 10
10x - 5y = 85
Giải hệ ra được: x = 9 và y = 1
Vậy bạn đó trả lời đúng 8 câu.
Giả sử thì sinh đó trả lời đúng hết thì sẽ có số điểm là: \(10.10=100\)(điểm)
Vì bạn đó được 85 điểm nên số điểm bị thừa là: \(100-85=15\)(điểm)
Số câu trả lời đúng là: \(10 - 15:(5+10)= 9\)(câu)
Vậy bạn đó đã trả lời đúng \(9\) câu
Ta có:\( \widehat{BIJ}=\widehat{BAI}+\widehat{ABI}\)
\(=\widehat{IAC}+\widehat{IBC}\) (I là tâm đường tròn nội tiếp tam giác ABC)
Xét (O) : \(\widehat{JAC}=\widehat{JBC}\)
Nên \( \widehat{BIJ}=\widehat{JBC}+\widehat{IBC}=\widehat{IBJ}\)
Suy ra tam giác BIJ cân tại J nên JB=JI
J ∈đường trung trực của BI
Chứng minh tương tự có: JI=JC nên J ∈đường trung trực của IC
Suy ra J là tâm đường tròn ngoại tiếp tam giác BIC
b, Xét O có \(\widehat{JBK} =90^o\)
nên tam giác JBK vuông tại B
BE là đường cao (OB=OC;JB=JC nên OJ trung trực BC)
suy ra \(JB^2=JE.JK\) hay \(JI^2=JE.JK\)
b, Xét (O) có\( \widehat{SBJ}=\widehat{BAJ}=\widehat{JBC} \)(góc tạo bởi tia tt và dây cung và góc nội tiếp cùng chắn cung JB)
suy ra BJ là đường phân giác trong\( \widehat{SBE}\)
\(BJ⊥ BK \)nên BK là đường phân giác ngoài tam giác SBE
suy ra\( \dfrac{SJ}{JE}=\dfrac{SK}{EK}\)
hay \(SJ.EK=SK.JE\)
c, Đặt L là tâm đường tròn bàng tiếp tam giác ABC suy ra A;J;L thẳng hàng
CL phân giác ngoài góc C;CI phân giác ngoài góc C
suy ra
JI=JC nên \(\widehat{JIC}=\widehat{JCI}\)
\( \widehat{JIC}+ \widehat{ILC}=90^o\)
\(\widehat{JCI}+ \widehat{JCL}=90^o\)
nên \(\widehat{ILC}= \widehat{JCL}\)
suy ra JC=JL nên J là trung điểm IL
Có:\( \widehat{ACL}=\widehat{ACI}+90^o\)
\(\widehat{AIB}=\widehat{ACI}+90^o\)
nên \(\widehat{ACL}=\widehat{AIB}\)
Lại có: \(\widehat{LAC}=\widehat{BAI}\)
nên tam giác ABI \(\backsim\) tam giác ALC
suy ra \(AB.AC=AI.AL\)
Có trung tuyến SB SC cát tuyến SDA nên tứ giác ABDC là tứ giác điều hòa với \(AB.DC=BD.AC=\dfrac{1}{2}.AD.BC\)
suy ra \(BD.AC=AD.EC\)
cùng với\( \widehat{BDA}=\widehat{ECA}\)
nên tam giác ABD đồng dạng AEC
suy ra \(AB.AC=AD.AE;\widehat{BAD}=\widehat{EAC}\)
vậy \(AD.AE=AI.AL;\widehat{DAI}=\widehat{LAE}\) (do AJ là phân giác góc A)
từ đây suy ra tam giác ADI\( \backsim\) tam giác ALE
nên \(\widehat{ADI}=\widehat{ALE}\)
mà \( \widehat{ADI}= \widehat{AJM}=\widehat{ALE}\)
nên JM//LE
J là trung điểm IL nên JM đi qua trung điểm IE (đpcm)
Bài 129:
ĐKXĐ: \(x^2-y+1\ge0\)\(\left\{{}\begin{matrix}4x^2-2x+y^2+y-4xy=0\left(1\right)\\x^2-x+y=\left(y-x+3\right)\sqrt{x^2-y+1}\left(2\right)\end{matrix}\right.\)
Từ (1) \(\Rightarrow\left(2x-y\right)^2-\left(2x-y\right)=0\Leftrightarrow\left(2x-y\right)\left(2x-y-1\right)=0\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=2x-1\end{matrix}\right.\)
Nếu y=2x Thay vào (2) ta được:
\(\Rightarrow x^2-x+2x=\left(2x-x+3\right)\sqrt{x^2-2x+1}\Leftrightarrow x^2+x=\left(x+3\right)\left|x-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x=\left(x+3\right)\left(1-x\right)\left(x< 1\right)\left(3\right)\\x^2+x=\left(x+3\right)\left(x-1\right)\left(x\ge1\right)\left(4\right)\end{matrix}\right.\)
Từ (3) \(\Rightarrow x^2+x=x-x^2+3-3x\Leftrightarrow2x^2+3x-3=0\) \(\Leftrightarrow x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}-\dfrac{9}{16}-\dfrac{3}{2}=0\Leftrightarrow\left(x-\dfrac{3}{4}\right)^2=\dfrac{33}{16}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{4}\left(L\right)\\x=\dfrac{3-\sqrt{33}}{4}\left(TM\right)\end{matrix}\right.\)\(\Rightarrow y=\) \(2\cdot\left(\dfrac{3-\sqrt{33}}{4}\right)=\dfrac{3-\sqrt{33}}{2}\)
Từ (4) \(\Rightarrow x^2+x=x^2-x+3x-3\Leftrightarrow-x=-3\Leftrightarrow x=3\left(TM\right)\)\(\Rightarrow y=6\)
Nếu y=2x+1 Thay vào (2) ta được:
\(\Rightarrow x^2-x+2x+1=\left(2x+1-x+3\right)\sqrt{x^2-2x-1+1}\Leftrightarrow x^2+x+1=\left(x+4\right)\sqrt{x^2-2x}\left(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.;x\ge-4\right)\)
\(\Rightarrow x^2+x+1-\left(x+4\right)\sqrt{x^2-2x}=0\Leftrightarrow2x^2+2x+2-2x\sqrt{x^2-2x}-4\sqrt{x^2-2x}=0\Leftrightarrow x^2-2x+x^2+4-2x\sqrt{x^2-2x}+4x-4\sqrt{x^2-2x}=2\Leftrightarrow\left(-\sqrt{x^2-2x}+x+2\right)^2=2\) \(\Leftrightarrow\left[{}\begin{matrix}-\sqrt{x^2-2x}+x+2=\sqrt{2}\left(5\right)\\-\sqrt{x^2-2x}+x+2=-\sqrt{2}\left(6\right)\end{matrix}\right.\)
Từ (5) \(\Rightarrow\sqrt{x^2-2x}=x+2-\sqrt{2}\Rightarrow x^2-2x=x^2+\left(2-\sqrt{2}\right)^2-2x\left(2-\sqrt{2}\right)\Leftrightarrow2x\left(2-\sqrt{2}-2\right)=4+2-4\sqrt{2}\Leftrightarrow-2\sqrt{2}x=6-4\sqrt{2}\Leftrightarrow x=-\dfrac{3\sqrt{2}}{2}+2\left(TM\right)\) \(\Rightarrow y=2\left(\dfrac{-3\sqrt{2}}{2}+2\right)+1=-3\sqrt{2}+5\)
Từ (6) \(\Rightarrow\sqrt{x^2-2x}=x+2+\sqrt{2}\Rightarrow x^2-2x=x^2+\left(2+\sqrt{2}\right)^2+2x\left(2+\sqrt{2}\right)\Leftrightarrow2x\left(2+\sqrt{2}-2\right)=6+4\sqrt{2}\Leftrightarrow2\sqrt{2}x=6+4\sqrt{2}\Leftrightarrow x=\dfrac{3\sqrt{2}}{2}+2\left(TM\right)\)
\(\Rightarrow y=2\left(\dfrac{3\sqrt{2}}{2}+2\right)+1=3\sqrt{2}+5\)
Vậy...
Mik sorry mik làm nhầm
Nếu y=2x-1 Thay vào(2) ta được:
\(\Rightarrow x^2-x+2x-1=\left(2x-1+x+3\right)\sqrt{x^2-2x-1+1}\Leftrightarrow x^2+x-1=\left(x+2\right)\sqrt{x^2-2x}\left(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\right)\) \(\Leftrightarrow2x^2+2x-2-2x\sqrt{x^2-2x}-4\sqrt{x^2-2x}=0\Leftrightarrow x^2-2x+x^2+4-2x\sqrt{x^2-2x}-4\sqrt{x^2-2x}+4x=6\Leftrightarrow\left(-\sqrt{x^2-2x}+x+2\right)^2=6\Leftrightarrow\left[{}\begin{matrix}-\sqrt{x^2-2x}+x+2=\sqrt{6}\left(5\right)\\-\sqrt{x^2-2x}+x+2=-\sqrt{6}\left(6\right)\end{matrix}\right.\) Từ (5) \(\Rightarrow\sqrt{x^2-2x}=x+2-\sqrt{6}\Rightarrow x^2-2x=x^2+2x\left(2-\sqrt{6}\right)+\left(2-\sqrt{6}\right)^2\Leftrightarrow2x\left(2-\sqrt{6}-2\right)=10-4\sqrt{6}\Leftrightarrow x=-\dfrac{5\sqrt{6}}{6}+2\left(TM\right)\) \(\Rightarrow y=2\left(\dfrac{-5\sqrt{6}}{6}+2\right)-1=-\dfrac{5\sqrt{6}}{3}+3\)
Từ (6) \(\Rightarrow\sqrt{x^2-2x}=x+2+\sqrt{6}\Rightarrow x^2+2x=x^2+2x\left(2+\sqrt{6}\right)+\left(2+\sqrt{6}\right)^2\Leftrightarrow2x\left(2+\sqrt{6}-2\right)=10+4\sqrt{6}\Leftrightarrow x=\dfrac{5\sqrt{6}}{6}+2\left(TM\right)\) \(\Rightarrow y=2\left(\dfrac{5\sqrt{6}}{6}+2\right)-1=\dfrac{5\sqrt{6}}{3}+3\) Vậy...
1: ĐKXĐ: a,b>0, a\(\ne b\)
\(\Rightarrow Q=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^3+2a\sqrt{a}+b\sqrt{b}}{3\sqrt{a}\left(a\sqrt{a}+b\sqrt{b}\right)}+\dfrac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}=\dfrac{a\sqrt{a}-3a\sqrt{b}+3b\sqrt{a}-b\sqrt{b}+2a\sqrt{a}+b\sqrt{b}}{3\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\dfrac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\) \(=\dfrac{3\sqrt{a}\left(a-\sqrt{ab}+b\right)}{3\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\dfrac{1}{\sqrt{a}+\sqrt{b}}=\dfrac{1}{\sqrt{a}+\sqrt{b}}-\dfrac{1}{\sqrt{a}+\sqrt{b}}=0\)
\(\Rightarrow Q\) ko phụ thuộc vào a,b Vậy...
2: Ta có \(1\ge x+y\ge2\sqrt{xy}\Rightarrow xy\le\dfrac{1}{4}\)
\(\Rightarrow P=\dfrac{x+y}{xy}\cdot\sqrt{x^2y^2+\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}}\ge\dfrac{2\sqrt{xy}}{xy}\cdot\sqrt{17}\cdot\sqrt[34]{\dfrac{x^2y^2}{16^{16}}}=\sqrt{17}\cdot\dfrac{2}{\sqrt{xy}}\cdot\sqrt[17]{\dfrac{xy}{16^8}}\) \(=\sqrt{17}\cdot\sqrt[17]{\dfrac{2^{17}}{\sqrt{x^{17}y^{17}}}\cdot\dfrac{\sqrt{x^2y^2}}{2^{32}}=\sqrt{17}\cdot\sqrt[17]{\dfrac{1}{\sqrt{x^{15}y^{15}}\cdot2^{15}}}\ge\sqrt{17}\cdot\sqrt[17]{\dfrac{1}{\sqrt{\dfrac{1}{4^{15}}}\cdot2^{15}}}=\sqrt{ }17}\)
Dấu = xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\) Vậy...
mk nhat quan luon
mình đã trả lời tick mình đi