cho x la 1 đa thức bậc 4 biết f(x)=f(-x) cmr các hệ số của lũy thừa lẻ đều bằng 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi đa thức f ( x )= a x^4 + bx^3+c x ^2 + d x +e = a x^4 - bx^3+cx^2-dx+e
áp dụng hệ số bất định => b = -b ; d=-d => b=0;d=0 => đpcm
1. Công thức tính tổng các hệ số của f(x) là: \(a_n+a_{n-1}+a_{n-2}+...+a_1+a_0\)
2. Công thức tính tổng các hệ số của:
- Lũy thừa bậc chẵn là: \(a_0+a_2+a_4+a_6+...+a_{2k-2}+a_{2k}\)với k = n/2 khi n chẵn và k = (n-1)/2 với n lẻ.
- Lũy thừa bậc lẻ là: \(a_1+a_3+a_5+a_7+...+a_{2k-3}+a_{2k-1}\)với k = n/2 khi n chẵn và k = (n+1)/2 với n lẻ.
\(1.\text{ }f\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\)
\(2.\)
+Trường hợp 1: n chẵn
\(f\left(-1\right)=a_n-a_{n-1}+...-a_1+a_0\)
\(\Rightarrow a_n+a_{n-2}+...+a_0-\left(a_{n-1}+a_{n-3}+...+a_1\right)=f\left(-1\right)\)
Mà \(\left(a_n+a_{n-2}+...+a_0\right)+\left(a_{n-1}+a_{n-3}+...+a_1\right)=f\left(1\right)\)
Cộng theo vế, ta được \(a_n+a_{n-2}+...+a_0=\frac{f\left(1\right)+f\left(-1\right)}{2}\)
Trừ theo vế, ta được: \(a_{n-1}+a_{n-3}+...+a_1=\frac{f\left(1\right)-f\left(-1\right)}{2}\)
+Trường hợp 2: n lẻ.
Làm tương tự, ta được:
\(a_n+a_{n-2}+...+a_3+a_1=\frac{f\left(1\right)-f\left(-1\right)}{2}\)
\(a_{n-1}+a_{n-3}+...+a_0=\frac{f\left(1\right)+f\left(-1\right)}{2}\)
- Gọi đa thức f(x) có dạng : \(f_{\left(x\right)}=x^4+x^3+x^2+x^1\)
- Để \(f_{\left(x\right)}=f_{\left(-x\right)}\) thì :
\(x^4+x^3+x^2+x^1=\left(-x\right)^4+\left(-x\right)^3+\left(-x\right)^2+\left(-x\right)^1\)
=> \(x^4+x^3+x^2+x^1=x^4+\left(-x\right)^3+x^2+\left(-x\right)^1\)
=> \(x^3+x^1+x^3+x^1=0\)
=> \(x^3+x^1=0\)
=> \(x\left(x^2+1\right)=0\)
Mà \(x^2+1>0\)
=> \(x=0\)
Vậy đã được chứng minh .
f(x)=ax^4+bx^3+cx^2+dx+e, vì f(x)=f(-x) nên ax^4+bx^3+cx^2+dx+e=a(-x)^4+b(-x)^3+c(-x)^2+d(-x)+e
suy ra 2b.x^3+2d.x=0, suy ra b=d=0