K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

Tam giác ABE= tam giác ACD(c-g-c)

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{B}=\widehat{C}\)

BD=CE

Do đó: ΔABD=ΔACE

=>AD=AE

=>ΔADE cân tại A

b:

Ta có: BE=BD+DE

CD=CE+ED

mà BD=CE

nên  BE=CD

 Xét ΔABE và ΔACD có

AB=AC

AE=AD

BE=CD

Do đó: ΔABE=ΔACD

a: Xét ΔABD và ΔACE có

AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

ΔADE cân tại A

mà AM vuông góc DE

nên AM là phân giác của góc DAE

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc BAH=góc CAK

=>ΔAHB=ΔAKC

=>BH=KC

d: Gọi giao của BH và CK là O

góc OBC=góc HBD

góc OCB=góc KCE
mà góc HBD=góc KCE

nên góc OBC=góc OCB

=>OB=OC

=>O nằm trên trung trực của BC

=>A,M,O thẳng hàng

 

25 tháng 1 2022

Bạn vẽ hình giúp mình nghen

a. Kẻ AI vuông góc với BC, ta có ABC là tam giác cân tại A nên: AI vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow BI=IC\)

Mà DI=DB+BI và EI=EC+CI và BD=EC \(\Rightarrow DI=EI\)

Suy ra AI cũng là đường cao cũng là đường trung tuyến của tam giác AED

\(\Rightarrow\)Tam giác ADE cân tại A

b. Xét \(\Delta ABD\) và \(\Delta ACE\) có: \(\left\{{}\begin{matrix}AB=AC\\DB=EC\\AD=AE\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta ABD\) = \(\Delta ACE\) (c-c-c)

\(\Rightarrow\widehat{DAB}=\widehat{EAC}\)

Xét \(\Delta AHB\) vuông tại H và \(\Delta AKC\) vuông tại K có: \(\left\{{}\begin{matrix}AB=AC\\\widehat{DAB}=\widehat{EAC}\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta AHB\)=\(\Delta AKC\) (dpcm)

\(\Rightarrow AH=AK\)

Xét \(\Delta AHO\) vuông tại H và \(\Delta AKO\) vuông tại K có: \(\left\{{}\begin{matrix}AH=AK\\AOchung\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta AHO\) = \(\Delta AKO\) (dpcm)

 

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
\(\widehat{BAH}=\widehat{CAK}\)

Do đó: ΔAHB=ΔAKC

Suy ra: \(\widehat{AHB}=\widehat{AKC}\)

10 tháng 8 2022

loading...

 

a: Xét ΔABD và ΔACE có

AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

ΔADE cân tại A

mà AM vuông góc DE

nên AM là phân giác của góc DAE

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc BAH=góc CAK

=>ΔAHB=ΔAKC

=>BH=KC

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Xét ΔHDB vuông tại H và ΔKEC vuông tại K có 

DB=EC

\(\widehat{D}=\widehat{E}\)

Do đó: ΔHDB=ΔKEC

Suy ra: BH=CK

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

c: Xét ΔADE có 

AH/AD=AK/AE

Do đó: HK//DE
hay HK//BC

11 tháng 1 2022

giúp mk câu c ik

pls.

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

c: Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

=>\(\widehat{DCB}=\widehat{EBC}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

7 tháng 1

chưa hiểu phần song song