Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số 1 ; 3 trên đoạn [1;3] bằng
A. 65 3
B. 6
C. 20
D. 52 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$
Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$
Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.
Câu 2:
Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$
Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$
Với $x\in (1;3)$ thì hàm luôn nghịch biến
$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$
$\Rightarrow$ hàm không có min, max.
Đáp án B
Ta có: f ' x = 1 − 1 x 2 = x 2 − 1 x 2 ≥ 0 ∀ x ∈ 1 ; 4 do đó hàm số đồng biến trên đoạn 1 ; 4
Do đó M i n 1 ; 4 f x . M ax 1 ; 4 f x = f 1 . f 4 = 17 2 .
Đáp án C
TXĐ: D= R.
Ta có y′=(2x+2)ex+(x2+2x−2)ex=(x2+4x)ex=0⇔[x=−4x=0.
Ta có bảng biến thiên
Vậy GTLN và GTNN của hàm số trên [0;1] lần lượt bằng e và −2.