K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

không phải tìm x đâu mà là rút gọn biểu thức

 

27 tháng 1 2016

bài toán kiểu gì vậy sai đề rùi

17 tháng 6 2016

Đối với bài này, ta sẽ xét các khoảng giá trị của x : 

  • Với \(x< -1\Rightarrow\hept{\begin{cases}x+1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=-x-1\\\left|x-3\right|=3-x\end{cases}}}\)

Khi đó , \(E=2\left(3-x\right)+-x-1-5=-3x\)

  • Với \(x>3\Rightarrow\hept{\begin{cases}x-3>0\\x+1>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left|x-3\right|=x-3\\\left|x+1\right|=x+1\end{cases}}\)

Khi đó, \(E=2\left(x-3\right)+\left(x+1\right)-5=3x-10\)

  • Với \(-1\le x\le3\Rightarrow\hept{\begin{cases}x-3\le0\\x+1\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left|x-3\right|=3-x\\\left|x+1\right|=x+1\end{cases}}\)

Khi đó \(E=2\left(3-x\right)+\left(x+1\right)-5=-x+2\)

Vậy .....

18 tháng 6 2016

Viết thế này gọn hơn của Ngọc xíu:

\(E=\hept{\begin{cases}x< -1\mid:2\left(3-x\right)-\left(x+1\right)-5\\-1\le x< 3\mid:2\left(3-x\right)+x+1-5\\x\ge3\mid2:\left(x-3\right)+x+1-5\end{cases}=\hept{\begin{cases}x< -1\mid:-3x\\-1\le x< 3\mid:-x+2\\x\ge3\mid:3x-10\end{cases}}}\)

11 tháng 7 2021

3( x - 1 ) - 2| x + 3 | (*)

Với x < -3 (*) trở thành 3x - 3 + 2( x + 3 ) = 3x - 3 + 2x + 6 = 5x + 3

Với x >= -3 (*) trở thành 3x - 3 - 2( x + 3 ) = 3x - 3 - 2x - 6 = x - 9

2 tháng 7 2018

Khi x ≥ 1 ta có x - 1 ≥ 0 nên | x - 1 | = x - 1

Do đó A = | x - 1 | + 3 - x = x - 1 + 3 - x = 2.

16 tháng 7 2019

Ta có: |x + 5| = x + 5 khi x + 5 ≥ 0 hay x ≥ -5.

|x + 5| = -(x + 5) khi x + 5 < 0 hay x < -5.

Vậy :

+ Với x ≥ -5 thì D = 3x + 2 + x + 5 = 4x + 7.

+ Với x < -5 thì D = 3x + 2 – (x + 5) = 3x + 2 – x – 5 = 2x – 3.

4 tháng 10 2017

\(Ix-2I+x+3\)

a, Thay x=-1 vào biểu thức , ta có :

/-1-2/+(-1)+3=/-3/-1+3

                     =3-1+3

                     =5

21 tháng 8 2023

a/ Để rút gọn biểu thức A, chúng ta có thể thực hiện các bước sau:

Tích hợp tử số và mẫu số trong mỗi phần tử của biểu thức.Sử dụng công thức (a + b)(a - b) = a^2 - b^2 để loại bỏ căn bậc hai khỏi mẫu số.

Áp dụng các bước trên, ta có: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x))

Bây giờ, chúng ta sẽ rút gọn biểu thức này: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x)) = [(2√x + 2) + (2√x - 2) + (√x(2√x - 2)(2√x + 2))]/[(2√x - 2)(2√x + 2)(1 - x)] = [4√x + √x(4x - 4)]/[(4x - 4)(1 - x)] = [4√x + 4√x(x - 1)]/[-4(x - 1)(x - 1)] = [4√x(1 + x - 1)]/[-4(x - 1)(x - 1)] = -√x/(x - 1)

b/ Để tính giá trị của A với x = 4/9, ta thay x = 4/9 vào biểu thức đã rút gọn: A = -√(4/9)/(4/9 - 1) = -√(4/9)/(-5/9) = -√(4/9) * (-9/5) = -2/3 * (-9/5) = 6/5

Vậy, khi x = 4/9, giá trị của A là 6/5.

c/ Để tính giá trị của x sao cho giá trị tuyệt đối của A bằng 1/3, ta đặt: |A| = 1/3 |-√x/(x - 1)| = 1/3

Vì A là một số âm, ta có: -√x/(x - 1) = -1/3

Giải phương trình trên, ta có: √x = (x - 1)/3 x = ((x - 1)/3)^2 x = (x - 1)^2/9 9x = (x - 1)^2 9x = x^2 - 2x + 1 x^2 - 11x + 1 = 0

Sử dụng công thức giải phương trình bậc hai, ta có: x = (11 ± √(11^2 - 4 * 1 * 1))/2 x = (11 ± √(121 - 4))/2 x = (11 ± √117)/2

Vậy, giá trị của x để giá trị tuyệt đối của A bằng 1/3 là (11 + √117)/2 hoặc (11 - √117)/2.