Cho tam giác ABC vuông cân tại A, BC = 2 cm. Ở phía ngoài tam giác ABC, vẽ tam giác ACE vuông cân tại E. Tính các góc và các cạnh của hình thang AECB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $BAC$ là tam giác vuông cân tại $A$
$\Rightarrow \widehat{BCA}=45^0$
$ACE$ là tam giác vuông cân tại $E$
$\Rightarrow \widehat{EAC}=45^0$
Do đó: $\widehat{BCA}=\widehat{EAC}$. Mà 2 góc này ở vị trí so le trong nên $AE\parallel BC$. Mà $\widehat{E}=90^0$ nên $AECB$ là hình thang vuông.
-----------------
Tính góc:
Hình thang vuông $AECB$ có $\widehat{E}=90^0$ đương nhiên $\widehat{C}=180^0-\widehat{E}=90^0$
$\widehat{ABC}=45^0$ (do $ABC$ vuông cân tại $A$)
$\widehat{BAE}=\widehhat{BAC}+\widehat{EAC}=90^0+45^0=135^0$
Tính cạnh:
Vì $ABC$ vuông cân tại $A$ nên $AB=AC$
Áp dụng định lý Pitago:
$AB^2+AC^2=BC^2=4$
$AB^2+AB^2=4$
$2AB^2=4\Rightarrow AB=\sqrt{2}$ (cm)
$\Rightarrow AC=\sqrt{2}$ (cm)
Áp dụng định lý Pitago cho tam giác $ACE$ vuông cân tại $E$:
$AE^2+EC^2=AC^2=2$
$2AE^2=2\Rightarrow AE=1$ (cm)
$EC=AE=1$ (cm)
Vậy.........
Tam giác ABC vuông cân tại A
⇒ ∠ (ACB) = 45 0
Tam giác EAC vuông cân tại E
⇒ ∠ (EAC) = 45 0
Suy ra: ∠ (ACB) = ∠ (EAC)
⇒ AE // BC (vì có cặp góc ở vị trí so le trong bằng nhau)
nên tứ giác AECB là hình thang có ∠ E = 90 0 . Vậy AECB là hình thang vuông
Bài 2:
kẻ hình thang ABCD
kẻ 2 đường cao AH và BK nối B với H
xét tam giác ABH và tam giác KBH
có ^ABH = ^KBH ( 2gocs so le trong )
HB chung
=> tam giác ABH = tam giác KBH (cạnh huyền +góc nhọn )
=> AB =HK ( 2 cạnh tương ứng )
xét tam giác BKC có BC>KC ( trong tam giác vuông cạnh huyền là cạnh lớn nhất )(1)
xét tam giác AHD có AD>HD (trong tam giác vuông cạnh huyền là cạnh lớn nhất)(2)
từ (1) và (2) => BC+AD >KC+HD
ta lại có DH+DK +HK =DC
mà AB=HK (C/m )
=> DH+DK+AB =dc
ta có DC-AB = DH+DK+AB-AB= DH+DK
mà DH+DK<BC+AD(c/m)
=>DC -AB< BC+AD
vậy tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy
∠ E = ∠ (ECB) = 90 0 , ∠ B = 45 0
∠ B + ∠ (EAB) = 180 0 (hai góc trong cùng phía bù nhau)
⇒ ∠ (EAB) = 180 0 - ∠ B = 180 0 – 45 0 = 135 0
Tam giác ABC vuông tại A. Theo định lí Py-ta-go ta có:
A B 2 + A C 2 = B C 2 mà AB = AC (gt)
⇒ 2 A B 2 = B C 2 = 2 2 = 4
A B 2 = 2 ⇒ AB= √2(cm) ⇒ AC = √2 (cm)
Tam giác AEC vuông tại E. Theo định lí Py-ta-go ta có:
E A 2 + E C 2 = A C 2 , mà EA = EC (gt)
⇒ 2 E A 2 = A C 2 = 2
E A 2 = 1
⇒ EA = 1(cm) ⇒ EC = 1(cm)