Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Số nghiệm của phương trình f(x) + 1 = 0 là:
A. 3.
B. 0.
C. 1.
D. 2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Dựa vào bảng biến thiên, ta có lim x → 1 y = ± ∞ ⇒ x = − 1 là TCĐ của đồ thị hàm số
Và lim x → ± ∞ y = + ∞ suy ra hàm số không có tiệm cận ngang
\(f'\left(x\right)=0\) có đúng 1 nghiệm bội lẻ \(x=0\) nên hàm có 1 cực trị
Đáp án C
Ta có bảng biến thiên của hàm số y = f x như sau:
Từ bảng biến thiên suy ra f x = m với m ∈ 0 ; 4 có 4 nghiệm
Lời giải:
$f'(x)=0\Leftrightarrow x=0; x=1; x=3; x=2$.
BBT:
Từ BBT suy ra điểm cực tiêu là $x=0$
Đáp án B
Từ bảng xét dấu f'(x) ta thấy trên khoảng ( - ∞ ; - 1 ) thì f'(x)<0 nên hàm số y=f(x) nghịch biến trên khoảng ( - ∞ ; - 1 )
Quan sát bảng biến thiên ta thấy phương trình này có 2 nghiệm.
Chọn D