K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2019

18 tháng 11 2023

`a)TXĐ:R\\{1;1/3}`

`y'=[-4(6x-4)]/[(3x^2-4x+1)^5]`

`b)TXĐ:R`

`y'=2x. 3^[x^2-1] ln 3-e^[-x+1]`

`c)TXĐ: (4;+oo)`

`y'=[2x-4]/[x^2-4x]+2/[(2x-1).ln 3]`

`d)TXĐ:(0;+oo)`

`y'=ln x+2/[(x+1)^2].2^[[x-1]/[x+1]].ln 2`

`e)TXĐ:(-oo;-1)uu(1;+oo)`

`y'=-7x^[-8]-[2x]/[x^2-1]`

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:
a.

$y'=-4(3x^2-4x+1)^{-5}(3x^2-4x+1)'$

$=-4(3x^2-4x+1)^{-5}(6x-4)$

$=-8(3x-2)(3x^2-4x+1)^{-5}$

b.

$y'=(3^{x^2-1})'+(e^{-x+1})'$

$=(x^2-1)'3^{x^2-1}\ln 3 + (-x+1)'e^{-x+1}$

$=2x.3^{x^2-1}.\ln 3 -e^{-x+1}$

c.

$y'=\frac{(x^2-4x)'}{x^2-4x}+\frac{(2x-1)'}{(2x-1)\ln 3}$

$=\frac{2x-4}{x^2-4x}+\frac{2}{(2x-1)\ln 3}$

d.

\(y'=(x\ln x)'+(2^{\frac{x-1}{x+1}})'=x(\ln x)'+x'\ln x+(\frac{x-1}{x+1})'.2^{\frac{x-1}{x+1}}\ln 2\)

\(=x.\frac{1}{x}+\ln x+\frac{2}{(x+1)^2}.2^{\frac{x-1}{x+1}}\ln 2\\ =1+\ln x+\frac{2^{\frac{2x}{x+1}}\ln 2}{(x+1)^2}\)

e.

\(y'=-7x^{-8}-\frac{(x^2-1)'}{x^2-1}=-7x^{-8}-\frac{2x}{x^2-1}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(a,y'=8x^3-9x^2+10x\\ \Rightarrow y''=24x^2-18x+10\\ b,y'=\dfrac{2}{\left(3-x\right)^2}\\ \Rightarrow y''=\dfrac{4}{\left(3-x\right)^3}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(c,y'=2cos2xcosx-sin2xsinx\\ \Rightarrow y''=-5sin\left(2x\right)cos\left(x\right)-4cos\left(2x\right)sin\left(x\right)\\ d,y'=-2e^{-2x+3}\\ \Rightarrow y''=4e^{-2x+3}\)

6 tháng 11 2023

a) \(\int\dfrac{2dx}{x^2-5x}=\int\left(\dfrac{-2}{5x}+\dfrac{2}{5\left(x-5\right)}\right)dx=-\dfrac{2}{5}ln\left|x\right|+\dfrac{2}{5}ln\left|x-5\right|+C\)

\(\Rightarrow A=-\dfrac{2}{5};B=\dfrac{2}{5}\Rightarrow2A-3B=-2\)

b) \(\int\dfrac{x^3-1}{x+1}dx=\int\dfrac{x^3+1-2}{x+1}dx=\int\left(x^2-x+1-\dfrac{2}{x+1}\right)dx=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2+x-2ln\left|x+1\right|+C\)

\(\Rightarrow A=\dfrac{1}{3};B=\dfrac{1}{2};E=-2\Rightarrow A-B+E=-\dfrac{13}{6}\)

17 tháng 12 2018

\(A=x^2-4x+1\)

\(A=\left(x^2-4x+4\right)-3\)

\(A=\left(x-2\right)^2-3\)

\(\left(x-2\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-2\right)^2-3\ge-3\) với mọi x

\(\Rightarrow Amin=-3\Leftrightarrow x=2\)

\(B=4x^2+4x+11\)

\(B=\left(4x^2+4x+1\right)+10\)

\(B=\left(2x+1\right)^2+10\)

\(\left(2x+1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(2x+1\right)^2+10\ge10\) với mọi x

\(\Rightarrow Bmin=10\Leftrightarrow x=-\dfrac{1}{2}\)

\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)

\(C=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(C=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(C=\left(x^2+5x\right)^2-36\)

\(\left(x^2+5x\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

\(\Rightarrow Cmin=-36\Leftrightarrow x^2+5x=0\)

\(\Rightarrow x\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(D=5-8x-x^2\)

\(D=-\left(x^2+8x-5\right)\)

\(D=-\left(x^2+8x+16-16-5\right)\)

\(D=-\left(x^2+8x+16\right)+21\)

\(D=-\left(x+4\right)^2+21\)

\(-\left(x+4\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x+4\right)^2+21\le21\) với mọi x

\(\Rightarrow Dmax=21\Leftrightarrow x=-4\)

\(E=4x-x^2+1\)

\(E=-\left(x^2-4x-1\right)\)

\(E=-\left(x^2-4x+4-4-1\right)\)

\(E=-\left(x^2-4x+4\right)+5\)

\(E=-\left(x-2\right)^2+5\)

\(-\left(x-2\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-2\right)^2+5\le5\) với mọi x

\(\Rightarrow Emax=5\Leftrightarrow x=2\)

Chọn C

19 tháng 4 2023

em muốn hỏi cách làm ấy ạ? hướng giải là như nào ấy ạ

Chọn B

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Bài 1:

Ta nhớ công thức \(\sin^2x=\frac{1-\cos 2x}{2}\). Áp dụng vào bài toán:

\(F(x)=8\int \sin^2\left(x+\frac{\pi}{12}\right)dx=4\int \left [1-\cos \left(2x+\frac{\pi}{6}\right)\right]dx\)

\(\Leftrightarrow F(x)=4\int dx-4\int \cos \left(2x+\frac{\pi}{6}\right)dx=4x-2\int \cos (2x+\frac{\pi}{6})d(2x+\frac{\pi}{6})\)

\(\Leftrightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+c\)

Giải thích 1 chút: \(d(2x+\frac{\pi}{6})=(2x+\frac{\pi}{6})'dx=2dx\)

\(F(0)=8\Rightarrow -1+c=8\Rightarrow c=9\)

\(\Rightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+9\)

Câu 2:

Áp dụng nguyên hàm từng phần như bài bạn đã đăng:

\(\Rightarrow F(x)=-xe^{-x}-e^{-x}+c\)

\(F(0)=1\Rightarrow -1+c=1\Rightarrow c=2\)

\(\Rightarrow F(x)=-e^{-x}(x+1)+2\), tức B là đáp án đúng

NV
19 tháng 1 2024

\(\int\left(3x^2-2x-4\right)dx=x^3-x^2-4x+C\)

\(\int\left(sin3x-cos4x\right)dx=-\dfrac{1}{3}cos3x-\dfrac{1}{4}sin4x+C\)

\(\int\left(e^{-3x}-4^x\right)dx=-\dfrac{1}{3}e^{-3x}-\dfrac{4^x}{ln4}+C\)

d. \(I=\int lnxdx\)

Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=x\end{matrix}\right.\)

\(\Rightarrow u=x.lnx-\int dx=x.lnx-x+C\)

e. Đặt \(\left\{{}\begin{matrix}u=x\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=x.e^x-\int e^xdx=x.e^x-e^x+C\)

f.

Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=sinxdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cosx\end{matrix}\right.\)

\(\Rightarrow I=-\left(x+1\right)cosx+\int cosxdx=-\left(x+1\right)cosx+sinx+C\)

g.

Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{1}{2}x^2\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{1}{2}x^2.lnx-\dfrac{1}{2}\int xdx=\dfrac{1}{2}x^2.lnx-\dfrac{1}{4}x^2+C\)