Cho mặt phẳng P : x + m z - m = 0 và mặt phẳng Q : ( 1 - m ) x - m y = 0 (tham số m # 0 ). Gọi d = P ∩ Q . Xét các mặt phẳng α chứa (d), xét điểm A 2 ; 1 ; 1 . Khi đó gọi h là khoảng cách từ A đến (d) thì GTLN của h h m a x bằng bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ta có:
Mặt phẳng (P) đồng thời vuông góc với cả hai mặt phẳng (Q) và (R) khi và chỉ khi
Đáp án C
Ta có: n p → = (1; m; m + 3), n Q → = (1; -1; 2).
Hai mặt phẳng (P) và (Q) vuông góc khi và chỉ khi n p → . n Q → = 0
⇔ 1.1 + m.(-1) + (m + 3).2 = 0 ⇔ m + 7 = 0 ⇔ m = -7
Đáp án B
Vecto pháp tuyến của hai mặt phẳng (P) và (Q) là :
n p → (1; -1; 2); n q → (2; -2; m2 + 3m)
Hai mặt phẳng (P) và (Q) song song với nhau khi và chỉ khi tồn tại một số thực k sao cho:
n p → = k. n q →
Đáp án A
Phương pháp:
lần lượt là các VTPT. Khi đó, góc giữa hai mặt phẳng α , β được tính
Cách giải:
(P): x+2y-2z+2018=0
(Q): x+my+(m-1)z+2017=0
Góc giữa hai mặt phẳng (P) và (Q):
Khi đó
Ta thấy:
Đáp án A
Phương pháp:
Cho ; nhận n 1 → = a 1 ; b 1 ; c 1 ; n 2 → = a 2 ; b 2 ; c 2 lần lượt là các VTPT. Khi đó, góc giữa hai mặt phẳng
α ; β được tính: cos α ; β = cos n 1 → ; n 2 → = n 1 → . n 2 → n 1 → n 2 →
Với 0 0 ≤ α ≤ 90 0 ⇒ α m i n ⇔ cos α m a x
Cách giải:
(P): x + 2y – 2z +2018 = 0 có 1 VTPT: n 1 → = 1 ; 2 ; - 2
(Q): x + my + (m – 1)z + 2017 = 0 có 1 VTPT: n 2 → = 1 ; m ; m - 1
Góc giữa hai mặt phẳng (P) và (Q):
cos P ; Q = cos n 1 → ; n 2 → = n 1 → . n 2 → n 1 → n 2 →
Với 0 0 ≤ α ≤ 90 0 ⇒ α m i n ⇔ cos α m a x
=>((P),(Q))min khi và chỉ khi
Khi đó,
Ta thấy:
Chọn đáp án A