K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2018

Chọn đáp án C.

23 tháng 10 2019

Đáp án A

1 tháng 1 2020

Đáp án B

Kéo dài A’N, B’B, NP căt nhau tại H ta có :

16 tháng 5 2018

2 tháng 8 2017

Chọn D

Gọi H là trung điểm của BC suy ra MH//AC

Ta có 

20 tháng 5 2017

Gọi H là trung điểm BC, suy ra MH//AC

Khi đó


11 tháng 7 2019

Đáp án D

Gọi E là trung điểm của BC, F là trung điểm của BE

Khi đó M F / / A E  mà A E / / A ' N  nên  M F / / A ' N

Suy ra các điểm A ' , M , F , N  thuộc cùng một mặt phẳng

Vậy A ' M N  cắt cạnh BC tại P ⇒ P  trùng với F

Công thức tổng quát tính thể tích khối đa diện

“thể tích khối chóp cụt là V = h 3 B + B ' + B B '  với h là chiều cao, B, B’ lần lượt là diện tích hai đáy”

Và diện tích đáy B = S M B P = S A B C 8 = S 8 B ' = S A ' B ' N = S A ' B ' C ' 2 = S 2  với S = a 2 3 4  

⇒  Thể tích khối đa diện M N P . A ' B ' N  là  V = B B ' 3 S 8 + S 2 + S 8 . S 2 = 7 3 a 3 96

12 tháng 5 2019

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(BCC'B'\) là hình chữ nhật \( \Rightarrow BC\parallel B'C'\)

\( \Rightarrow \left( {AB,B'C'} \right) = \left( {AB,BC} \right) = \widehat {ABC} = {60^ \circ }\).

b)

\(\Delta AA'B\) vuông tại \(A \Rightarrow \tan \widehat {ABA'} = \frac{{AA'}}{{AB}} = \frac{a}{a} = 1 \Rightarrow \widehat {ABA'} = {45^ \circ }\)

Vậy \(\left( {A'B,\left( {ABC} \right)} \right) = {45^ \circ }\).

c) \(CC' \bot \left( {ABC} \right) \Rightarrow CC' \bot BC,CC' \bot CM\)

Vậy \(\widehat {BCM}\) là góc nhị diện \(\left[ {B,CC',M} \right]\).

\(\Delta ABC\) đều \( \Rightarrow \widehat {BCM} = \frac{1}{2}\widehat {ACB} = {30^ \circ }\).

d) \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot CM\)

\(\Delta ABC\) đều \( \Rightarrow CM \bot AB\).

\( \Rightarrow CM \bot \left( {ABB'A'} \right)\)

\(\Delta ABC\) đều \( \Rightarrow CM = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\).

\(\left. \begin{array}{l}CC'\parallel AA'\\AA' \subset \left( {ABB'A'} \right)\end{array} \right\} \Rightarrow CC'\parallel \left( {ABB'A'} \right)\)

\( \Rightarrow d\left( {CC',\left( {ABB'A'} \right)} \right) = d\left( {C,\left( {ABB'A'} \right)} \right) = CM = \frac{{a\sqrt 3 }}{2}\)

e) \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot CM\)

\(\Delta ABC\) đều \( \Rightarrow CM \bot AB\).

\( \Rightarrow CM \bot \left( {ABB'A'} \right) \Rightarrow CM \bot A'M\)

\(CC' \bot \left( {ABC} \right) \Rightarrow CC' \bot CM\)

\( \Rightarrow d\left( {CC',A'M} \right) = CM = \frac{{a\sqrt 3 }}{2}\)

g) \({S_{\Delta ABC}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{4},h = AA' = a\)

\( \Rightarrow {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^2}\sqrt 3 }}{4}.a = \frac{{{a^3}\sqrt 3 }}{4}\)

\({S_{\Delta MBC}} = \frac{1}{2}{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{8},h = AA' = a\)

\( \Rightarrow {V_{A'.MBC}} = \frac{1}{3}{S_{\Delta MBC}}.AA' = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{8}.a = \frac{{{a^3}\sqrt 3 }}{{24}}\)

25 tháng 12 2019

Đáp án B

Tọa độ hóa với  O ≡ N , O x ≡ N B ' , O y ≡ N A ' , O z ≡ N K và chuẩn hóa vớí a = 2 .

Ta có

A ' 0 ; 3 ; 0 , A 0 ; 3 ; 2 B 1 ; 0 ; 2 ⇒ M 1 2 ; 3 2 ; 2

⇒ N A ' → = 0 ; 3 ; 0 N M → = 1 2 ; 3 2 ; 2 ⇒ n A ' M N → = N A ' → . N M → = 2 3 ; 0 ; − 3 2

 

⇒ A ' M N : 4 x − z = 0  

Lại có

B 1 ; 0 ; 2 , K 0 ; 0 ; 2 ⇒ K B → = 1 ; 0 ; 0 ⇒ B C : x = t y = 0 z = 2

 

P = B C ∩ A ; M N ⇒ P 1 2 ; 0 ; 2  

V M B P . A ' B ' N ' = V M . A ' B ' N + V M . B P N B = V A . A ' B ' N + 1 2 V A . B P N B ' V A . A ' B ' N = 1 2 V A . A ' B ' C ' = 1 6 V A B C . A ' B ' C ' S B P N B ' = 1 2 S B C C ' B ' − S N P K = 1 2 S B C C ' B ' − 1 8 S B C C ' B ' = 3 8 S B C C ' B ' = 3 4 S B C B ' ⇒ V A . B P N B ' = 3 4 V A . B C B ' = 1 4 V A B C . A ' B ' C ' ⇒ V M B P . A ' B ' N = 7 24 V A B C . A ' B ' C ' = 7 24 A ' A . S A B C = 7 24 a . a 2 3 4 = 7 a 3 3 96