Cho tam giác ABC có A ^ = 50 ° , AB = 4cm, AC = 7cm. Trên tia AC lấy điểm D sao cho AD = 2 cm. Trên tia CA lấy điểm E sao cho CE = 3 cm.
a) Tính độ dài DE.
b) D là trung điểm của đoạn thẳng nào? Vì sao?
c) Đoạn thẳng BD là cạnh của các tam giác nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điểm E nằm giữa hai điểm C, D vì CD = 5cm > CE = 3cm.
b) Trong ba tia BD,BE,BC tia BE nằm giữa hai tia còn lại vì điểm E nằm giữa hai điểm C, D.
c) DE = 2cm.
d) D là trung điểm của đoạn thẳng AE vì AD = DE = 2cm.
e) Đoạn thẳng BD là cạnh, của các tam giác: BDA, BDE,BDC.
a) Điểm E nằm giữa hai điểm C, D vì CD = 5cm > CE = 3cm.
b) Trong ba tia BD,BE,BC tia BE nằm giữa hai tia còn lại vì điểm E nằm giữa hai điểm C, D.
Xét ΔCAB và ΔCED có
\(\widehat{CAB}=\widehat{CED}\)(hai góc so le trong, DE//AB)
\(\widehat{ACB}=\widehat{ECD}\)(hai góc đối đỉnh)
Do đó: ΔCAB đồng dạng với ΔCED
=>\(\dfrac{CA}{CE}=\dfrac{AB}{ED}=\dfrac{CB}{CD}\)
=>\(\dfrac{12}{CE}=\dfrac{18}{ED}=\dfrac{9}{3}=3\)
=>\(CE=\dfrac{12}{3}=4\left(cm\right);ED=\dfrac{18}{3}=6\left(cm\right)\)
1: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
2: Xét ΔBCD có
BA là đường cao
BA là đường trung tuyến
Do đó: ΔBCD cân tại B
3: Xét ΔBCD có
BA là đường trung tuyến
CE là đường trung tuyến
BA cắt CE tại G
Do đó: G là trọng tâm của ΔBCD
=>AG=1/3BA=1(cm)
a) DE = 2cm.
b) D là trung điểm của đoạn thẳng AE vì AD = DE = 2cm.
c) Đoạn thẳng BD là cạnh, của các tam giác: BDA, BDE,BDC.