K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2021

Ta có: \(a=b+c\Rightarrow c=a-b\)

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{b^2c^2+a^2c^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^4+a^2b^2-2ab^3+a^4+a^2b^2-2a^3b+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2-ab\right)^2}{a^2b^2c^2}}=\left|\dfrac{a^2+b^2-ab}{abc}\right|\)

=> Là một số hữu tỉ do a,b,c là số hữu tỉ

2 tháng 5 2022

Ta có:

f(−2)+f(3)=((−2)2a−2b+c)+(32a+3b+c)=(4a−2b+c)+(9a+3b+c)=13a+b+2c=0f(−2)+f(3)=((−2)2a−2b+c)+(32a+3b+c)=(4a−2b+c)+(9a+3b+c)=13a+b+2c=0

Suy ra⎡⎢ ⎢ ⎢ ⎢⎣{f(−2)>0f(3)<0{f(−2)<0f(3)>0⇒f(−2).f(3)<0

vậy......

 

2 tháng 5 2022

\(13a+b+2c=0\Rightarrow b=-13a-2c\)

\(f\left(x\right)=ax^2+bx+c\)

\(f\left(-2\right).f\left(3\right)=\left(4a-2b+c\right)\left(9a+3b+c\right)\)

\(=\left(4a-2\left(-13a-2c\right)+c\right)\left(9a+3\left(-13a-2c\right)+c\right)\)

\(=\left(4a+26a+4c+c\right)\left(9a-39a-6c+c\right)\)

\(=\left(30a+5c\right)\left(-30a-5c\right)\)

\(=-\left(30a+5c\right)^2\le0\)

-Dấu "=" xảy ra khi \(a=-b=-\dfrac{1}{6}c\)

27 tháng 6 2017

Xét hai trường hợp b nguyên dương và b nguyên âm. 

_xét b nguyên dương. Vì a,b cùng dấu nên a nguyên dương. Ta có a/b> 0/b=0. Vậy a/b là số hữu tỉ dương.

_xét b nguyên âm

Ta có -b nguyên dương. Vì a,b cùng dấu nên a nguyên âm. Suy ra a nguyên dương. Do đó a/b= -a/-b> 0/-b = 0. Vậy a/b là số hưu tỉ dương

19 tháng 2 2023

Ta có : \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\text{=}\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+2\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)

\(\text{=}\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+2.\dfrac{c+b-a}{abc}\)

\(\text{=}\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2\left(do-a\text{=}b+c\right)\)

\(\Rightarrow\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\text{=}\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2}\)

\(\text{=}\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\)

Do \(a,b,c\) là các số hữu tỉ khác 0 nên

\(\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\) là một số hữu tỉ

\(\Rightarrow dpcm\)

19 tháng 2 2023

Ta có : 

 P = \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+\dfrac{1}{2ac}+\dfrac{1}{2ab}-\dfrac{1}{2bc}}\)

\(=\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+\dfrac{1}{2abc}\left(b+c-a\right)}\)

\(=\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2}=\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\) (do a = b + c) 

=> P là số hữu tỉ với a,b,c \(\ne0\)

 P = 

 (do a = b + c) 

=> P là số hữu tỉ với a,b,c