Một hộp có 5 bi xanh và 7 bi đỏ. Cứ thực hiện lấy ngẫu nhiên ra 1 viên rồi bỏ lại vào hộp. Hỏi phải lấy ngẫu nhiên ít nhất bao nhiêu lần để xác suất lấy được 1 viên bi đỏ lớn hơn hoặc bằng 0,9.
A. 3.
B. 5.
C. 4.
D. 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Giả sử lấy ra n lần, xác suất để cả n lần được bị xanh là 5 12 n
Do đó xác suất để lấy được ít nhất 1 bi đỏ là 1 - 5 12 n
Yêu cầu bài toán
Gọi A là biến cố: “trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ.”
Trong hộp có tất cả: 5+ 15 + 35 = 55 viên bi
- Số phần tử của không gian mẫu: Ω = C 55 7 .
- A ¯ là biến cố: “trong số 7 viên bi được lấy ra không có viên bi màu đỏ nào.”
=> n A ¯ = C 20 7 .
Vì A và A ¯ là hai biến cố đối nên: n A = Ω − n A ¯ = C 55 7 − C 20 7 .
Xác suất để trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ là P A = C 55 7 − C 20 7 C 55 7 .
Chọn đáp án B.
Chọn B.
Số cách lấy 7 viên bi từ hộp là C 35 7
Số cách lấy 7 viên bi không có viên bi đỏ là C 20 7 .
Số cách lấy 7 viên vi có ít nhất 1 viên đỏ là C 55 7 - C 20 7 xác suất là C 55 7 - C 20 7 C 55 7 .
có một hộp viên bi xanh 1 viên bi đỏ 1 viên bi vàng và 1 viên bi có kích thước và khối lượng như nhau mỗi lần An lấy một viên bi ra và ghi lại một 1 viên bi sau đó lại bỏ bi vào hộp sau 30 lần liên tiếp lấy bi có 9 lần xuất hiện bi màu đỏ , 10 lần xuất hiện bi màu vàng Tính xác suất trực nghiệm xuất hiện bi màu xanh
Chọn D.
Lấy 3 viên bi từ 5+4=9 viên bi có C 9 3 cách.
+) Lấy 1 viên bi đỏ và 2 viên xanh có C 5 1 C 4 2 cách.
+) Lấy 2 viên đỏ và 1 viên xanh có C 5 2 C 4 1 cách.
+) Lấy 3 viên đỏ có C 5 3 cách.
Vậy xác suất cần tìm là
C 5 1 C 4 2 + C 5 2 C 4 1 + C 5 3 C 9 3 = 20 21