hãy chứng minh rằng:
Nếu (ab+cd+eg) chia hết cho 11 thì abcdeg chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì abcdeg chia hết cho 11 ( giả thiết b ) => abcdeg chia hết cho 11
b. Vì ab+cd+eg chia hết cho 11 ( giả thiết đầu bài ) => ab+cd+eg chia hết cho 11
nếu ab+cd+eg chia hết cho 11 ta sẽ có như sau:
abcdeg=ab.10000+cd.100+eg.1 Ta lại có như sau
ab.10000+100.cd+eg.1 - ab+cd+eg =ab.9999+cd.99 mà 9999chia hết cho 11 và 99 chia hết cho 11 nên khi ab+cd+eg chia hết cho 11 thì abcdeg cũng chia hết cho 11 .
đúng ko . đúng xin một lời nói đúng vào trang của mình
Lời giải:
$\overline{abcdeg}=\overline{ab}\times 10000+\overline{cd}\times 100+\overline{eg}$
$=(\overline{ab}+\overline{cd}+\overline{eg})+9999\overline{ab}+99\overline{cd}$
$=(\overline{ab}+\overline{cd}+\overline{eg})+11(909\overline{ab}+9\overline{cd})\vdots 11$ do:
$(\overline{ab}+\overline{cd}+\overline{eg})\vdots 11$ và $11(909\overline{ab}+9\overline{cd})\vdots 11$
TK :
Theo tính chất chia hết của một tổng:
(ab + cd + eg) chia hết cho 11 (giả thiết),⇒ ab hoặc cd hoặc eg chia hết cho 11
⇒ abcdeg chia hết cho 11 (tính chất a ⋮ b, thì ac ⋮ b)
Theo tính chất chia hết cho 11:
abcdeg = ab.10000 + cd.100 + eg
abcdeg = 9999.ab + 99.cd + ab + cd + eg
abcdeg = 9999ab + 99cd + (ab + dc + eg)
Mà 9999ab ⋮ 11, 99cd ⋮ 11, (ab + cd + eg) ⋮ 11
⇒ abcdeg ⋮ 11
Ta có
abcdeg = ab.10000+cd.100+eg
=9999.ab+ab+99.cd+cd+eg
=(9999.ab+99.cd)+(ab+cd+eg)
Vì 9999.ab+99.cd chia hết cho 11, ab+cd+eg chia hết cho 11vậy ababcdeg chia hết cho 11
tham khảo ở đây nha: Câu hỏi của Tân Hoàn Châu - Toán lớp 6 - Học toán với OnlineMath
t i c k nhé!! 465675678897808909568483732574568568876863245345445657665
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
Ta có abcdeg=ab*10000+cd*100+eg
=>9999*ab+99*cd+ab+cd+eg
=>(9999*ab+99*cd)+(ab+cd+eg)
Vì 9999*ab+99*cd chia hết cho 11 và ab+cd+eg+cũng chia hết cho 11
=>abcdeg chia hết cho 11
ta có;
abcdeg = ab.10000 + cd.100 + eg
= 9999.ab + 99.cd + ab + cd + eg
= (9999ab + 99cd) + ( ab + cd + eg)
Vì \(9999ab+99cd⋮11\) và \(ab+cd+eg⋮11\)
\(\Rightarrow abcdeg⋮11\)
abcdef = ab . 10000 + cd .100 + ef
= (ab . 9999 + cd . 99) +( ab + cd + ef)
= 11. (ab . 909 + cd . 9) +( ab + cd + ef)
Ta thấy 11. (ab . 909 + cd . 9) chia hết cho 11
mà theo bài ra ab + cd + ef
Chia hết cho 11
Vậy nên: 11. (ab . 909 + cd . 9) +( ab + cd + ef)
hay : abcdef