Cho phân thức P= \(\frac{6x^2+2x-3xy-y}{6x-3y}\)
a.Tìm tập xác định của phân thức P
b Rút gọn phân thức P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ:
\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)
b) \(A=\dfrac{x^2-2x+1}{x^2-1}\)
\(A=\dfrac{x^2-2\cdot x\cdot1+1^2}{x^2-1^2}\)
\(A=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\)
\(A=\dfrac{x-1}{x+1}\)
c) Thay x = 3 vào A ta có:
\(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)
a) ĐKXĐ:
\(9x^2-y^2\ne0\Leftrightarrow\left(3x\right)^2-y^2\ne0\Leftrightarrow\left(3x-y\right)\left(3x+y\right)\ne0\)
\(\Leftrightarrow3x\ne\pm y\)
b) \(B=\dfrac{6x-2y}{9x^2-y^2}\)
\(B=\dfrac{2\cdot3x-2y}{\left(3x\right)^2-y^2}\)
\(B=\dfrac{2\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}\)
\(B=\dfrac{2}{3x+y}\)
Thay x = 1 và \(y=\dfrac{1}{2}\) và B ta có:
\(B=\dfrac{2}{3\cdot1+\dfrac{1}{2}}=\dfrac{2}{3+\dfrac{1}{2}}=\dfrac{2}{\dfrac{7}{2}}=\dfrac{4}{7}\)
\(P=\dfrac{3x^2+6x+3}{x+1}\)
\(a,\) Điều kiện xác định: \(x+1\ne0\Leftrightarrow x\ne-1\)
\(b,P=\dfrac{3x^2+6x+3}{x+1}=\dfrac{3\left(x^2+2x+1\right)}{x+1}=\dfrac{3\left(x+1\right)^2}{x+1}=3\left(x+1\right)=3x+3\)
\(c,x=1\Rightarrow P=3.1+3=6\)
a) Để phân thức trên xác định \(\Leftrightarrow x^3-8\ne0\Leftrightarrow x\ne2\)
b) \(\frac{3x^2+6x+12}{x^3-8}\)
\(=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\frac{3}{x-2}\)
a) Phân thức xác định khi: \(\Leftrightarrow x-3\ne3\Leftrightarrow x\ne3\)
ĐKXĐ: \(x\ne3\)
b) \(A=\frac{2x^2+6x}{x^2-9}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x}{x-3}\)
c) Thay x = -4 vào phân thức đã thu gọn, ta có:
\(A=\frac{2.\left(-4\right)}{\left(-4\right)-3}=\frac{8}{7}\)
Vậy: tại x = -4 là \(\frac{8}{7}\)
a) \(x^2-9=\left(x-3\right)\left(x+3\right)\)
Phân thức xác định khi: \(\left(x-3\right)\left(x+3\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x-3=0\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\x=-3\end{cases}}\Leftrightarrow x\ne\pm3\)
ĐKXĐ: \(x\ne\pm3\)
b) \(A=\frac{2x^2+6x}{x^2-9}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x}{x-3}\)
c) \(A=\frac{2.\left(-4\right)}{\left(-4\right)-3}=\frac{8}{7}\)
\(P=\frac{6x^2+2x-3xy-y}{6x-3y}\)
a)Để phân thức P đc xác định thì \(6x-3y\ne0\Rightarrow6x\ne3y\Rightarrow2x\ne y\)
b\(P=\frac{6x^2+2x-3xy-y}{6x-3y}\)
\(P=\frac{3x.\left(2x-y\right)+\left(2x-y\right)}{3.\left(2x-y\right)}=\frac{\left(3x+1\right).\left(2x-y\right)}{3.\left(2x-y\right)}=\frac{3x+1}{3}\)(Do 2x-y\(\ne0\Rightarrow2x-y\ne0\)
\(P=\frac{6x^2+2x-3xy-y}{6x-3y}\)
a) Tìm đkxđ
6x-3y \(\ne\)0
=> 6x \(\ne\)0 ; 3y \(\ne\) 0
=> x \(\ne\) 0 ; y \(\ne\) 0
vậy đkxđ của x \(\ne\) 0 ; y \(\ne\) 0 thì P được xác định
b) Rút gọn
\(P=\frac{6x^2+2x-3xy-y}{6x-3y}\)
=> \(P=\frac{2x\left(3x+1\right)-y\left(3x+1\right)}{3\left(2x-y\right)}\)
=>\(P=\frac{\left(2x-y\right)\left(3x+1\right)}{3\left(2x-y\right)}\)
\(\Rightarrow P=\frac{3x+1}{3}\)
Vậy bt P=____ khi rút gọn = 3x+1/3