Tìm tập S tất cả các số nguyên dương n thỏa điều kiện ∫ 1 e ln n x d x < e - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
∫ 1 e ln n x d x = ∫ 1 e ln n - ln x d x = x ln n 1 e - ∫ 1 e ln x d x = e - 1 ln n - x ln x - x 1 e = e - 1 ln n - 1
Với n = 1 ta có I = -1 < e - 2.
Với n = 2 ta có I = eln2 - ( ln2 + 1 )
= ( e - 1 )ln2 - 1 < e - 1 -1 = e - 2
Đáp án C
\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)
\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)
\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)
Mà x nguyên dương \(\Rightarrow2x-1>0\)
\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\)
\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)
Bài 1:
(n+5) / (n+1)
= (n+1+4) / (n+1)
= 1 + 4/(n+1)
Để 4 chia hết cho n+1 thì n+1 là ước dương của 4 vì số nguyên tố ko bao giờ âm
Suy ra n+1 =(1;2;4)
Thử từng trường hợp với n+1 =1 ; n+1 =2; n+1=4 (bạn tự làm)
Suy ra n=3
n2 + n + 1 = ( m2 + m - 3 ) ( m2 - m + 5 ) = m4 + m2 + 8m - 15
\(\Rightarrow\)n2 + n - ( m4 + m2 + 8m - 16 ) = 0 ( 1 )
để phương trình ( 1 ) có nghiệm nguyên dương thì :
\(\Delta=1+4\left(m^4+m^2+8m-16\right)=4m^4+4m^2+32m-63\)phải là số chính phương
Ta có : \(\Delta=\left(2m^2+2\right)^2-4\left(m-4\right)^2-3< \left(2m^2+2\right)^2\)với m thuộc Z+
Mặt khác : \(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)\)
do đó : \(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)>\left(2m^2+1\right)^2\)với m > 2
\(\Rightarrow\left(2m^2+1\right)^2< \Delta< \left(2m^2+2\right)^2\)với m > 2
Nên ( 1 ) có nghiệm nguyên dương khi m = 1 hoặc m = 2
+) m = 1 thì \(n^2+n+16=0\) vô nghiệm
+) m = 2 thì \(n^2=n-20=0\Rightarrow\orbr{\begin{cases}n=4\left(tm\right)\\n=-5\left(loai\right)\end{cases}}\)
Thử lại m = 2 và n = 4 thỏa mãn điều kiện bài toán
Vậy m = 2 và n = 4
P/s : bài " gắt "
biến đổi nhá (x-2015+1)(x-2015-1)<0......\(y=\left(x-2015\right)^2-1\le0\)giải tiếp thôi
Đáp án C