giá trị lớn nhất của A=(-2/3+1/2x)^2-2,5 là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\dfrac{1}{2}x-\dfrac{2}{3}\right)^2-\dfrac{5}{2}\ge-\dfrac{5}{2}\forall x\)
Dấu '=' xảy ra khi x=4/3
Ta có: \(A=2,5+\left|x-3\right|\ge2,5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x-3\right|=0\)
\(\Leftrightarrow x-3=0\Rightarrow x=3\)
Vậy Min(A) = 2,5 khi x = 3
A = 2,5 + | x - 3 |
| x - 3 | ≥ 0 ∀ x => 2, 5 + | x - 3 | ≥ 2, 5
Dấu "=" xảy ra khi x = 3
=> MinA = 2,5 <=> x = 3
B = -2, 5 - | 3x - 1 |
-| 3x - 1 | ≤ 0 ∀ x => -2,5 - | 3x - 1 | ≤ -2, 5
Dấu "=" xảy ra khi x = 1/3
=> MaxB = -2, 5 <=> x = 1/3
C = -| x - 4 | + 2
-| x - 4 | ≤ 0 ∀ x => -| x - 4 | + 2 ≤ 2
Dấu "=" xảy ra khi x = 4
=> MaxC = 2 <=> x = 4
D = | 4, 2 - x | + 1
| 4, 2 - x | ≥ 0 ∀ x => | 4, 2 - x | + 1 ≥ 1
Dấu "=" xảy ra khi x = 4, 2
=> MinD = 1 <=> x = 4, 2
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
\(A=2^0+2^1+2^2+...+2^{21}\)
\(2A=2^1+2^2+2^3+...+2^{22}\)
\(2A-A=\left(2^1+2^2+2^3+...+2^{22}\right)-\left(2^0+2^1+2^2+...+2^{21}\right)\)
\(A=2^{22}-1\)
\(2^{22}-1=2^{2n}-1\)
\(2^{2\times11}-1=2^{2n}-1\)
n = 11
bn dũng hãy đọc kỹ đầu bài, bn làm k sai nhưng ng ta hỏi x nguyên, tập của x = (-1;0;1)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
Ta có :
\(\left(\frac{-2}{3}-\frac{1}{2}x\right)^2\ge0\)
\(\left(\frac{-2}{3}-\frac{1}{2}x\right)^2-2,5\ge-2,5\)
\(\Rightarrow Min_A=-2,5\)
\(\Leftrightarrow\left(-\frac{2}{3}-\frac{1}{2}x\right)^2=0\)
\(\Leftrightarrow\frac{1}{2}x=-\frac{2}{3}\)
\(\Rightarrow x=\frac{-2}{3}:\frac{1}{2}=\frac{-2}{3}.2=-\frac{4}{3}\)
Bài này không thể tìm trị lớn nhất
A không xác định được giá trị lớn nhất
bạn xem lại đề đi
Giá trị nhỏ nhất nha
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)