cho x,y>0 và x^3+y^3=x-y
cmr x^2+y^2<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
\(\dfrac{x^2+y^2}{x-y}=\dfrac{\left(x-y\right)^2+2xy}{x-y}=\dfrac{\left(x-y\right)^2+2}{x-y}=x-y+\dfrac{2}{x-y}\ge2\sqrt{\dfrac{2\left(x-y\right)}{\left(x-y\right)}}=2\sqrt{2}\)
\(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2-2xy=1\)
Áp dụng bđt AM-GM ta có
\(\left(x+y\right)^2-\frac{\left(x+y\right)^2}{2}\le1\)\(\Leftrightarrow\left(x+y\right)^2\le2\Rightarrow0< x+y\le\sqrt{2}\)