Tìm các số nguyên x, y sao cho (x - 2). (y + l) = 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.x=1;y=9\)
\(b. (x-6). (y+2)=7\)
Ta lập bảng :
\(x-6\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(y+2\) | \(7\) | \(-7\) | \(1\) | \(-1\) |
\(x \) | \(7\) | \(5\) | \(13\) | \(-1\) |
\(y\) | \(5\) | \(-9\) | \(-1\) | \(-3\) |
\(Vậy :..........\)
a) Vì x, y nguyên mà x.y = 9 nên x, y thuộc Ư(9)
Mà x< y. Ta có bảng sau
x | 1 | -9 |
y | 9 | -1 |
Vậy (x,y) \(\in\){(1;9) , ( -9; -1) }
b) vì x, y nguyên suy ra x-6 , y + 2 nguyên
mà (x-6). ( y+2) =7
nên (x-6), ( y+2) thuộc Ư(7) .Ta lập bảng như sau
x-6 | 1 | -1 | 7 | -7 |
y+2 | 7 | -7 | 1 | -1 |
x | 7 | 5 | 13 | -1 |
y | 5 | -9 | -1 | -3 |
Tự kết luận nhé
Ta có 6 = 3.2 - (-3).(-2);
Trường hợp 1. x - 2 = 2; y +1 = 3. Tìm được x = 4; y = 2.
Tương tự với các trường hợp khác, vậy tìm được các cặp
(x; y) = {(-4;-2), (-1;-3), (0;-4), (1;-7), (4;2), (5;1), (8;0)}
2:
a: 5/x-y/3=1/6
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)
=>30-2xy=x
=>x(2y+1)=30
=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}
=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}
b: x/6-2/y=1/30
=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)
=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)
=>5xy-60=y
=>y(5x-1)=60
=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)
=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}
Viết số -5 thành tích của hai số nguyên theo tất cả các cách, ta có:
-5 = l.(-5)=(-5).l = (-l).5 = 5.(-l). Từ đó ta tìm được x,y thỏa mãn điều kiện đề bài.
a) Các cặp số (x ; y) tìm được là: (1;-5),(-5; 1), (-1;5),(5; -1)
b) Dựa vào câu a và kết hợp điều kiện x > y, ta tìm được các cặp số (x;y) sau: (5;-l),(l;-5).
c) Làm tương tự câu a, ta tìm được x + 1 và y - 2. Từ đó suy ra (x;y) là (0;-3), (-6; 3), (-2; 7), (4; 1).
Viết số -5 thành tích của hai số nguyên theo tất cả các cách, ta có: -5 = l.(-5)=(-5).l = (-l).5 = 5.(-l). Từ đó ta tìm được x,y thỏa mãn điều kiện đề bài. a) Các cặp số (x ; y) tìm được là: (1;-5),(-5; 1), (-1;5),(5; -1) b) Dựa vào câu a và kết hợp điều kiện x > y, ta tìm được các cặp số (x;y) sau: (5;-l),(l;-5). c) Làm tương tự câu a, ta tìm được x + 1 và y - 2. Từ đó suy ra (x;y) là (0;-3), (-6; 3), (-2; 7), (4; 1)
Ta có 6 = 3.2 - (-3).(-2);
Trường hợp 1. x - 2 = 2; y +1 = 3. Tìm được x = 4; y = 2.
Tương tự với các trường hợp khác, vậy tìm được các cặp
(x; y) = {(-4;-2), (-1;-3), (0;-4), (1;-7), (4;2), (5;1), (8;0)}