K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2022

ta có : `x/2 = y/3 = z/4=> (2x)/4 =(3y)/9 = z/4`

`=> (2x)/4 =(3y)/9 = z/4` và `2x + 3y - z = 27`

Áp dụng t/c dãy tỉ số bằng nhau ta có:

`(2x)/4 =(3y)/9 = z/4 =(2x + 3y - z)/(4+9-4)=27/9=3`

`=>x/2=3=>x=3.2=6`

`=>y/3=3=>x=3.3=9`

`=>z/4=3=>z=3.4=12`

6 tháng 3 2017

ngu ? =)

18 tháng 12 2021

help me , giúp mình với 

khocroi

5 tháng 2 2022

7 nha  

HT

15 tháng 8 2021

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x-3y}{4-9}=-\dfrac{54}{5}\)

\(\dfrac{x}{2}=-\dfrac{54}{5}\Rightarrow x=-\dfrac{54}{5}.2=-\dfrac{108}{5}\)

\(\dfrac{y}{3}=-\dfrac{54}{5}\Rightarrow y=-\dfrac{54}{5}.3=-\dfrac{162}{5}\)

Vậy \(x=-\dfrac{108}{5};y=-\dfrac{162}{5}\)

 

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)

nên \(\dfrac{2x}{4}=\dfrac{3y}{9}\)

mà 2x-3y=54

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x-3y}{4-9}=\dfrac{-54}{5}\)

Do đó: \(x=-\dfrac{108}{5};y=-\dfrac{162}{5}\)

3 tháng 7 2023

a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)

4 tháng 8 2017

Ta có \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\) (luôn đúng)

Vậy \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)

Theo BĐT Cauchy-Schwarz dạng Engel

\(A=\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{1}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+y}=\dfrac{y}{y+z}=\dfrac{z}{z+x}\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\end{matrix}\right.\)

\(\Leftrightarrow a=b=c=\dfrac{1}{3}\)

4 tháng 8 2017

uk mk nhầm, nó là thế này

\(\dfrac{x}{x+y}=\dfrac{y}{y+z}=\dfrac{z}{z+x}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)

Suy ra x=y=z

Thay vào cái \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\) thì tìm đc thôi