Chứng minh rằng với mọi số tự nhiên khác 0 thì 3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp minh câu này với CMR 3n-1 và 6n-3 là nguyên tố cùng nhau (mọi n đều thuộc số nguyên tố khác 0)
ta có
gọi d là ƯCLN (3n+1 ; 4n+1)
suy ra 3n+1 chia hết cho d
4n+1 chia hết cho d
thì 12n +4 chia hết cho d
12n+3 chia hết cho d
suy ra 12n+4 -12n+3 chia hết cho d
suy ra 1 chia hết cho d
suy ra d =1
vậy 2 số này là 2 số nguyên tố cùng nhau
gọi ƯCLN(3n-1;4n-1)=d
=>4n-1-(3n-1)=n chia hết cho d
=>3n chia hết cho d
=>1 chia hết cho d
=>d=1
=>đpcm
Gọi \(d=ƯCLN\left(4n+1;5n+1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n+1⋮d\\5n+1⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}20n+5⋮d\\20n+4⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
Vậy: 4n+1 và 5n+1 là hai số nguyên tố cùng nhau
Gọi d là UCLN của 3n + 1 và 4n + 1
=> 3n + 1 chia hết cho d => 12n +4 chia hết cho d
4n + 1 chia hết cho d => 12n+3 chia hết cho d
=> (12n + 4 ) - ( 12n +3 ) chia hết cho d
=> 1 chia hết cho d => d = 1
Vậy 3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau.
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau
Gọi d là UCLN của 3n + 1 và 4n + 1
=> 3n+1 ⋮ d => 12n+4 ⋮ d
4n+1 ⋮ d => 12n+3 ⋮ d
=> (12n+4) – (12n+3) ⋮ d
=> 1 ⋮ d => d = 1
Vậy 3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau