Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tích phân ∫ 0 1 d x x + 1 bằng
A. log2
B. 1
C. ln2
D. –ln2
Đáp án C
Cho phương trình (1). x 2m-2ln(x m)=0 , với m là tham số . Phương trình (1) có hai nghiệm thực phân biệt khi và chỉ khi.. A. m<ln2 -1 B. m<2ln2 -2 C. m<ln2 D. m<ln2 1 giải gíup mình với ạ ... ths trước ạ...
Chọn A
Cho phương trình (1). x+2m-2ln(x+m)=0 , với m là tham số . Phương trình (1) có hai nghiệm thực phân biệt khi và chỉ khi..
A. m<ln2 -1 B. m<2ln2 -2 C. m<ln2 D. m<ln2 +1 giải gíup mình với ạ ... ths trước ạ...
Chọn B
Diện tích của hình phẳng được giới hạn bởi các đường: y = tanx; y = 0; x = -π/4 và x = π/4 bằng:
A. π; B. -π;
C. ln2; D. 0
Đáp án: C.
Hướng dẫn: Diện tích được tính bởi tích phân
Diện tích của hình phẳng được giới hạn bởi các đường: y = tanx; y = 0; x = - π /4 và x = π /4 bằng:
A. π ; B. - π ;
Cho tích phân I = ∫ 0 1 ( x + 2 ) ln ( x + 1 ) d x = a l n 2 − 7 b trong đó a, b là các số nguyên dương. Tổng a + b 2 bằng
A. 8
B. 16
C. 12
D. 20
Cho hàm số f (x) xác định trên ( - ∞ ; - 1 ) ∪ ( 0 ; + ∞ ) và f ' ( x ) = 1 x 2 + x , f ( 1 ) = ln 1 2 . Biết ∫ 1 2 ( x 2 + 1 ) f ( x ) d x = a ln 3 + b ln 2 + c với a,b,c là các số hữu tỉ. Giá trị biểu thức a+b+c bằng
A. 27 2
B. 1 6
C. 7 6
D. - 3 2
Cho tích phân I = ∫ 0 1 3 x + 2 ln ( 3 x + 1 ) x + 1 2 d x = ∫ 0 1 a 3 x + 1 - b x + 1 d x - 3 2 + ln 2 . Tính A = a 2 - b 4 . Chọn đáp án đúng:
A. 0
B. 2
C. 3
D. 4
Chọn A.
Cho a = log 2 , b = ln 2. Hệ thức nào sau đây là đúng?
A. 1 a + 1 b = 1 10 e
B. a b = e 10
C. 10 a = e b
D. 10 b = e a
Ta có a = log 2 ⇒ 2 = 10 a b = ln 2 ⇒ 2 = e b ⇒ 10 a = e b .
Cho hàm số y=f(x) liên tục và có đạo hàm trên R thỏa mãn điều kiện: 6 x e 2 x - y n = 4 y - y ' Biết rằng f ( 0 ) = 0 ; f ( ln 2 ) = 4 ln 3 2 + ln 2 Giá trị của tích phân ∫ 0 1 f ( x ) d x nằm trong khoảng nào dưới đây?
A. (0;3)
B. (3;4)
C. (4;7)
D. (10;12)
Tính các tích phân sau :
a) \(\int\limits^2_0\left|1-x\right|dx\)
b) \(\int\limits^{\dfrac{\pi}{2}}_0\sin^2xdx\)
c) \(\int\limits^{ln2}_0\dfrac{e^{2x+1}+1}{e^x}dx\)
d) \(\int\limits^{\pi}_0\sin2x\cos^2xdx\)
Đáp án C