rút gọn đơn thức
2ab-2bc.c-ab+1/2c^2b-cb^2-2cb^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=ab\cdot\dfrac{4}{3}a^2b^4\cdot7abc=\dfrac{28}{3}a^4b^6c\)
b: \(a^3b^3\cdot a^2b^2c=a^5b^5c\)
c: \(=\dfrac{2}{3}a^3b\cdot\dfrac{-1}{2}ab\cdot a^2b=\dfrac{-1}{3}a^6b^3\)
d: \(=-\dfrac{7}{3}a^3c^2\cdot\dfrac{1}{7}ac^2\cdot6abc=-2a^5bc^5\)
e: \(=\dfrac{-3}{2}\cdot\dfrac{1}{4}\cdot ab^2\cdot bca^2\cdot b=\dfrac{-3}{8}a^3b^4c\)
Nhận xét: \(b^3c-cb^3=0;b^2c-cb^2=0.\).Nên phân thức trở thành:
\(\frac{a^3b-ab^3+c^3a-ca^3}{a^2b-ab^2+c^2a-ca^2}=\frac{a^3\left(b-c\right)-a\left(b^3-c^3\right)}{a^2\left(b-c\right)-a\left(b^2-c^2\right)}\)
\(=\frac{a\left(b-c\right)\left\{a^2-\left(b^2-bc+c^2\right)\right\}}{a\left(b-c\right)\left\{a-\left(b+c\right)\right\}}\)
\(=\frac{a^2-\left(b^2-bc+c^2\right)}{a-\left(b+c\right)}=\frac{a^2-\left(b+c\right)^2+3bc}{a-\left(b+c\right)}\)
\(=a+b+c+\frac{3bc}{a-b-c}\).
2:
\(VT=\dfrac{a^2b}{a-b}\cdot\dfrac{2\sqrt{2}\left(a-b\right)}{5\sqrt{3}\cdot a^2\sqrt{b}}=\dfrac{2}{15}\cdot\sqrt{6b}=VP\)
1: \(=9\sqrt{ab}+\dfrac{7\sqrt{ab}}{b}-\dfrac{5\sqrt{ab}}{a}-3\sqrt{ab}=\)6căn ab+căn ab(7/b-5/a)
=căn ab(6+7/b-5/a)
\(A=\dfrac{3}{2\left(2x-1\right)}\cdot x^2\left|2x-1\right|\cdot2\sqrt{2}\)
\(=\pm3\sqrt{2}x^2\)
\(B=\dfrac{a-b}{b^2}\cdot\dfrac{b^2\cdot\left|a\right|}{\left|a-b\right|}\)
\(=\pm\left|a\right|\)
\(\frac{a}{ab+a+2}\)+ \(\frac{b}{bc+b+1}\)+ \(\frac{2c}{ac+2c+2}\)
= \(\frac{a}{ab+a+2}\)+ \(\frac{ab}{a\left(bc+b+1\right)}\)+ \(\frac{2abc}{ab\left(ac+2c+2\right)}\)
= \(\frac{a}{ab+a+2}\)+ \(\frac{ab}{abc+ab+a}\)+ \(\frac{2abc}{a^2bc+2abc+2ab}\)
= \(\frac{a}{ab+a+2}\)+ \(\frac{ab}{ab+a+2}\)+ \(\frac{2}{ab+a+2}\) (vì abc = 2 )
= \(\frac{ab+a+2}{ab+a+2}\)= 1
khó quá vì em đang học lớp 6
2ab-2bc.c-ab+1/2c^2b-cb^2-2cb^2
KẾT QUẢ: