Cm: n^4-n^2=(n-1).n.n.(n+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n^4 - 3x^3 + n^2 - 3n + 1 n^2 + 1 n^2 - 3n n^4 + n^2 - 3n^3 - 3n + 1 - 3n^3 -3n 1
Để chia \(n^4-3n^3+n^2-3n+1\) cho \(n^2+1\) có giá trị nguyên
⇔ \(n^4-3n^3+n^2-3n+1\) \(⋮n^2+1\)
⇔ \(1⋮n^2+1\)
\(\Leftrightarrow n^2+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
n2 + 1 | 1 | -1 |
n |
0 | ( loại ) |
\(1152=32.36\)
Đặt \(A=n^8-n^6-n^4+n^2=n^6\left(n^2-1\right)-n^2\left(n^2-1\right)\)
\(=n^2\left(n^2-1\right)\left(n^4-1\right)=n^2\left(n^2-1\right)\left(n^2-1\right)\left(n^2+1\right)\)
\(=\left[n\left(n-1\right)\left(n+1\right)\right]^2\left(n^2+1\right)\)
Do \(n\) lẻ \(\Rightarrow n=2k+1\)
\(\Rightarrow A=\left[\left(2k+1\right)\left(2k+1-1\right)\left(2k+1+1\right)\right]^2\left[\left(2k+1\right)^2+1\right]\)
\(=32\left[k\left(k+1\right)\left(2k+1\right)\right]^2.\left(2k^2+2k+1\right)\)
Do \(k\) và k+1 là 2 số tự nhiên liên tiếp \(\Rightarrow k\left(k+1\right)⋮2\) (1)
Nếu k chia hết cho 3 \(\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)
Nếu k chia 3 dư 1 \(\Rightarrow2k+1⋮3\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)
Nếu k chia 3 dư 2 \(\Rightarrow k+1⋮3\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)
\(\Rightarrow k\left(k+1\right)\left(2k+1\right)\) luôn chia hết cho 3 (2)
(1);(2) \(\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮6\Rightarrow\left[k\left(k+1\right)\left(2k+1\right)\right]^2⋮36\)
\(\Rightarrow32\left[k\left(k+1\right)\left(2k+1\right)\right]^2⋮\left(32.36\right)\Rightarrow A⋮1152\)
Đặt: \(A=n^8-n^6-n^4+n^2\)
\(A=\left(n^8-n^6\right)-\left(n^4-n^2\right)\)
\(A=n^6\left(n^2-1\right)-n^2\left(n^2-1\right)\)
\(A=\left(n^2-1\right)\left(n^6-n^2\right)\)
\(A=\left(n-1\right)\left(n+1\right)n^2\left(n^4-1\right)\)
\(A=n^2\left(n-1\right)\left(n+1\right)\left[\left(n^2\right)^2-1\right]\)
\(A=n^2\left(n-1\right)\left(n+1\right)\left(n^2-1\right)\left(n^2+1\right)\)
\(A=n^2\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
\(A=n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Ta có: \(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3
Còn: \(\left[n\left(n-1\right)\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)\right]\) sẽ chia hết cho \(3\times3=9\)
Do n sẽ là số lẻ nên \(\left(n-1\right);\left(n+1\right)\) sẽ luôn luôn là số chẵn
Mà: \(\left(n-1\right)\left(n+1\right)\) sẽ chia hết cho 8 vì tích của hai số chẵn liên liếp sẽ chia hết cho 8
Còn \(\left(n+1\right)\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\) sẽ chia hết cho \(8\cdot8\cdot2=128\)
Ta có:
\(\text{Ư}\text{C}LN\left(9;128\right)=1\)
Nên: A ⋮ \(9\cdot128=1152\left(dpcm\right)\)
Lời giải:
Ta có:
\(n^4+4=(n^2)^2+2^2=(n^2)^2+2^2+2.2.n^2-2.2.n^2\)
\(=(n^2+2)^2-(2n)^2\)
\((n^2+2-2n)(n^2+2+2n)\)
Với \(n\in \mathbb{N}; n>1\) thì \(n^2+2-2n; n^2+2+2n>1\)
Do đó \(n^4+4=(n^2+2-2n)(n^2+2+2n)\) là hợp số
Ta có đpcm.
Ta có : n.n-n+1
= n2+n-2n+1
=n(n+1) -2n+1
Vì n+1 chia hết cho n+1 => n(n+1) chia hết cho n+1
Để n.n-n+1 chia hết cho n+1
=> 1-2n phải chia hết cho n+1
=>1-2n / n+1 phải thuộc Z
ta lại có : \(\frac{1-2n}{n+1}=\frac{-2n-2+3}{n+1}=\frac{-2\left(n+1\right)+3}{n+1}=-2+\frac{3}{n+1}\)
để \(-2+\frac{3}{n+1}\) \(\in Z\)
=> \(\frac{3}{n+1}\in Z\)hay \(n+1\in\text{Ư}_{\left(3\right)}\)
bạn tự tính nốt nhé !
A = n 4 – 2 n 3 – n 2 +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó A ⋮ 24 .