K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

19 tháng 11 2017

4 tháng 7 2018

1 tháng 4 2019

Đáp án A

Gọi H là trung điểm của   A B ⇒ A ' H ⊥ A B C

Kẻ H K ⊥ A C    K ∈ A C  và   A ' H ⊥ A C ⇒ A C ⊥ A ' H K

Suy ra   A C C ' A ' ; A B C ^ = A ' K ; H K ^ = A ' K H ^ = 45 0

Tam giác A ' H K  VUÔNG TẠI H , CÓ   A ' K H ^ = 45 0 ⇒ A ' H = a 3 4

Vậy thể tích khối lăng trụ là  V = A ' H . S Δ A B C = a 3 4 . a 2 3 4 = 3 a 2 16

16 tháng 9 2019

Đáp án B

24 tháng 1 2017

Gọi H, M, I lần lượt là trung điểm của các đoạn thẳng AB, AC, AM.

Ta có IH là đường trung bình của tam giác AMB, MB là trung tuyến của tam giác đều ABC.

Do đó:

⇒ A ' I H ^  là góc gữa hai mặt phẳng (AA'C'C) và (ABCD) 

⇒ A ' I H ^ = 45 °

Trong tam giác A'HI vuông tại H, ta có:

 

13 tháng 2 2018

Đáp án C

17 tháng 5 2018

Gọi H, M, I lần lượt là trung điểm của các đoạn thẳng AB, AC, AM.

Ta có IH là đường trung bình của tam giác AMB, MB là trung tuyến của tam giác đều ABC.

Trong tam giác A'HI vuông tại H, ta có:

24 tháng 4 2019

28 tháng 3 2016

A H B C A' B' C' K I

Gọi H là trung điểm của AB, \(A'H\perp\left(ABC\right)\) và \(\widehat{A'CH}=60^0\)

Do đó \(A'H=CH.\tan\widehat{A'CH}=\frac{3a}{2}\)

Do đó thể tích khối lăng trụ là \(V_{ABC.A'B'C'}=\frac{3\sqrt{3}a^3}{8}\)

Gọi I là hình chiếu vuông góc của H lên AC; K là hình chiếu vuông góc của H lên A'I. Suy ra :

\(HK=d\left(H,\left(ACC'A'\right)\right)\)

Ta có :

\(HI=AH.\sin\widehat{IAH}=\frac{\sqrt{3}a}{4}\);

\(\frac{1}{HK^2}=\frac{1}{HI^2}+\frac{1}{HA'^2}=\frac{52}{9a^2}\)

=>\(HK=\frac{3\sqrt{13}a}{26}\)

Do đó \(d\left(B;\left(ACC'A'\right)\right)=2d\left(H;\left(ACC'A'\right)\right)=2HK=\frac{3\sqrt{13}a}{13}\)

30 tháng 3 2016

Khối đa diện