Cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của A' xuống mặt (ABC) là trung điểm của AB. Mặt bên (ACC'A') tạo với đáy góc 45 O . Thể tích khối lăng trụ này theo a là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi H là trung điểm của A B ⇒ A ' H ⊥ A B C
Kẻ H K ⊥ A C K ∈ A C và A ' H ⊥ A C ⇒ A C ⊥ A ' H K
Suy ra A C C ' A ' ; A B C ^ = A ' K ; H K ^ = A ' K H ^ = 45 0
Tam giác A ' H K VUÔNG TẠI H , CÓ A ' K H ^ = 45 0 ⇒ A ' H = a 3 4
Vậy thể tích khối lăng trụ là V = A ' H . S Δ A B C = a 3 4 . a 2 3 4 = 3 a 2 16
Gọi H, M, I lần lượt là trung điểm của các đoạn thẳng AB, AC, AM.
Ta có IH là đường trung bình của tam giác AMB, MB là trung tuyến của tam giác đều ABC.
Do đó:
⇒ A ' I H ^ là góc gữa hai mặt phẳng (AA'C'C) và (ABCD)
⇒ A ' I H ^ = 45 °
Trong tam giác A'HI vuông tại H, ta có:
Gọi H, M, I lần lượt là trung điểm của các đoạn thẳng AB, AC, AM.
Ta có IH là đường trung bình của tam giác AMB, MB là trung tuyến của tam giác đều ABC.
Trong tam giác A'HI vuông tại H, ta có:
Gọi H là trung điểm của AB, \(A'H\perp\left(ABC\right)\) và \(\widehat{A'CH}=60^0\)
Do đó \(A'H=CH.\tan\widehat{A'CH}=\frac{3a}{2}\)
Do đó thể tích khối lăng trụ là \(V_{ABC.A'B'C'}=\frac{3\sqrt{3}a^3}{8}\)
Gọi I là hình chiếu vuông góc của H lên AC; K là hình chiếu vuông góc của H lên A'I. Suy ra :
\(HK=d\left(H,\left(ACC'A'\right)\right)\)
Ta có :
\(HI=AH.\sin\widehat{IAH}=\frac{\sqrt{3}a}{4}\);
\(\frac{1}{HK^2}=\frac{1}{HI^2}+\frac{1}{HA'^2}=\frac{52}{9a^2}\)
=>\(HK=\frac{3\sqrt{13}a}{26}\)
Do đó \(d\left(B;\left(ACC'A'\right)\right)=2d\left(H;\left(ACC'A'\right)\right)=2HK=\frac{3\sqrt{13}a}{13}\)