K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

27 tháng 10 2019

Chọn A

Xét hình lăng trụ đều (H) đã cho có đáy là đa giác đều n đỉnh. Xét điểm trong I của hình lăng trụ đều (H) đã cho. Khi đó nối I với các đỉnh của (H) ta được n+2 khối chóp có đỉnh là I, trong đó có hai khối chóp có đỉnh là I và mặt đáy là mặt đáy của (H); và n khối chóp có đỉnh I và mặt đáy là mặt bên của (H). Diện tích mỗi mặt 

đáy của (H) bằng S; diện tích mỗi mặt bên của (H) bằng ah. Gọi h1, h2, .., hn, hn+1, hn2 lần lượt là khoảng cách từ I đến các mặt bên của (H) và các mặt đáy của (H). Vậy theo công thức tính thể tích của khối lăng trụ và khối chóp ta có:

Chú ý tổng khoảng cách từ I đến hai mặt đáy của (H) là  

1 tháng 1 2019

Đáp án A

Khoảng cách giữa hai mặt đáy là h = AH = A’H.tan A A ' H ^ = a 3 2 . tan 30 0 = a 2

23 tháng 10 2019

22 tháng 10 2017

4 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi I là trung điểm của cạnh B'C'. Theo giả thiết ta có AI ⊥ (A'B'C') và ∠ A A ′ I   =   60 ο . Ta biết rằng hai mặt phẳng (ABC) và (A'B'C') song song với nhau nên khoảng cách giữa hai mặt phẳng chính là khoảng cách AI.

Do đó 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ B′C′ ⊥ AA′

Mà AA′ // BB′ // CC′ nên B’C’ ⊥ BB’

 

Vậy mặt bên BCC’B’ là một hình vuông vì nó là hình thoi có một góc vuông.

18 tháng 2 2019

Đáp án B

Dễ dàng chứng minh được trung điểm O của đường chéo B′D chính là tâm mặt cầu ngoại tiếp lăng trụ.

28 tháng 2 2019

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

28 tháng 4 2017

Đáp án A.