Cho mặt cầu (S) có phương trình x - 3 2 + y + 2 2 + z - 1 2 = 100 và mặt phẳng α có phương trình 2 x - 2 y - z + 9 = 0 . Tính bán kính của đường tròn (C) là giao tuyến của mặt phẳng α và mặt cầu (S)
A. 8
B. a = 4 6
C. 10
D. 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ phương trình x - 3 2 + y + 2 2 + z - 1 2 = 100 ta suy ra mặt cầu (S) có tâm I(3;-2;1) và có bán kính R=10. Gọi H là tâm cả đường tròn (C) - Hình chiếu vuông góc của I trên mặt phẳng ( α )
Phương trình tham số của đường thẳng IH là: x = 3 + 2 t y = - 2 - 2 t z = 1 - t Thay x,y,z từ phương trình tham số của đường thẳng IH vào phương trình mp α tại H(-1;2;3). H là tâm của đường tròn (C). Vậy bán kính của đường tròn (C) là
Lời giải:
Bán kính mặt cầu là:
\(R=d(M, (a))=\frac{|1-1-2(-2)-2|}{\sqrt{1^2+1^2+2^2}}=\frac{\sqrt{6}}{3}\)
PT mặt cầu $(S)$ là:
$(x-1)^2+(y-1)^2+(z+2)^2=\frac{2}{3}$
Đáp án A