Công thức định luật Cu – lông là:
A. F = k q 1 q 2 R
B. F = k q 1 q 2 R 2
C. F = R q 1 q 2 k 2
D. F = k q 2 R 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, f(y)=4y6−6y2−3y4−3+4y4−4y6+5y
=\(^{y^4-6y^2+5y-3}\)
b, f(0)=\(^{0^4-6.0^2+5.0-3}\)
=-3
f(\(\dfrac{1}{2}\))=(\(\left(\dfrac{1}{2}\right)^4-6.\left(\dfrac{1}{2}\right)^2+5.\dfrac{1}{2}-3\)
=\(\dfrac{1}{16}-\dfrac{3}{2}+\dfrac{5}{2}-\dfrac{6}{2}\)
=\(\dfrac{1}{16}-\dfrac{24}{16}+\dfrac{40}{16}-\dfrac{48}{16}\)
=\(\dfrac{-31}{16}\)
c, A(y)=f(y)+k(y)
=(\(^{y^4-6y^2+5y-3}\))+(\(4y^2-y^4\)
=\(2y^2+5y-3\)
Xin lỗi ad nhìu nha :(( ý d tui hơm nhớ cách làm nên hông dám chỉ bậy:)
bạn ơi đề này bạn ghi linh tinh thì ai làm đc hả bạn, đừng đăng bài viết linh tinh nữa đi đc ko :|
Lời giải:
Áp dụng định lý về dấu của tam thức bậc 2.
a)
Để hàm \(f(x)=4x^2-(m+2)x+2m-3>0\forall x\in\mathbb{R}\)
\(\Leftrightarrow \Delta=(m+2)^2-16(2m-3)<0\)
\(\Leftrightarrow m^2-28m+52=(m-2)(m-26)<0\)
\(\Leftrightarrow 2< m<26\)
b)
Nếu \(m=-1\rightarrow f(x)=-6x\) không thể âm với mọi $x$
Nếu \(m\neq -1\):
Để \(f(x)=(m+1)x^2+2(2m-1)x-m-1<0\forall x\in\mathbb{R}\) thì cần hai đk sau:
1. \(m+1<0\leftrightarrow m<-1\)
2. \(\Delta'=(2m-1)^2+(m+1)^2<0\) (hiển nhiên vô lý)
Vậy không tồn tại $m$ thỏa mãn.
và bằng
A+S+D+F+G+H+J+K+L+M+NB++V+C+X+Z+Q+W+E+R+T+Y+U+I+O+P-A-S-D-F-G-H-J-K-L-MN-B-V-C-XZ-Q-W-E-R--T-Y-U-I-O-P/AS/D/F/G/H/J/K/L/M/N/B/V/C/X/Z/Q//W/E/R/T/Y/U/I/O/P/
a: f(x1)+f(x2)=a*x1+a*x2=a(x1+x2)
f(x1+x2)=a*(x1+x2)
=>f(x1)+f(x2)=f(x1+x2)
b: f(kx)=a*kx=ak*x
k*f(x)=k*ax=x*ka
=>f(kx)=k*f(x)
c: f(x1)*f(x2)=f(x1*x2)
=>ax1*ax2=a*(x1*x2)
=>a^2-a=0
=>a=1
1) \(f\left(x\right)=ax^{2\:}+bx+6\)có bậc 1 => a=0
Khi đó \(f\left(x\right)=bx+6;f\left(1\right)=3\)
\(\Rightarrow b\cdot1+6=3\Rightarrow b=-3\)
2) \(g\left(x\right)=\left(a-1\right)\cdot x^2+2x+b\)
g(x) có bậc 1 => a-1=0 => a=1. Khi đó
\(g\left(x\right)=2x+b\)lại có g(2)=1
\(\Rightarrow2\cdot2+b=1\Rightarrow b=-3\)
3) \(h\left(x\right)=5x^3-7x^2+8x-b-ax^{3\: }=x^3\left(5-a\right)-7x^2+8x-b\)
h(x) có bậc 2 => 5-a=0 => a=5
Khi đó h(x)=-7x2+8x-b
h(-1)=3 => -7(-1)2+8.(-1)+b=3
<=> -7-8+b=3 => b=18
4) r(x)=(a-1)x3+5x3-4x2+bx-1=(a-1+5)x3-4x2+bx-1=(a+4)x3-4x2+bx-1
r(x) bậc 2 => a+4=0 => a=-4
r(2)=5 => (-4).22+b.2-1=5
<=> -16+2b-1=5
<=> 2b=22 => b=11
f(a+b) = f(a.b) với mọi a và b thuộc R vậy nên ta có f(x) không phụ thuộc vào x.
Vậy f(2016) = -1/2
Chọn B.
Công thức định luật Cu-lông: