Tìm số hạng không chứa x trong khai triển x 2 + 2 x 6 với x ≠ 0
A. 2 4 C 6 2
B. 2 2 C 6 2
C. − 2 4 C 6 4
D. − 2 2 C 6 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)
Số hạng ko chứa x tương ứng với 10-2k=0
=>k=5
=>SH đó là 8064
b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)
Số hạng ko chứa x tương ứng với 6-3k=0
=>k=2
=>Số hạng đó là 60
c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)
\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)
SH chứa x^10 tương ứng với 15-5k=10
=>k=1
=>Hệ số là -810
\(C^1_n+C^2_n=15\)
=>\(n+\dfrac{n!}{\left(n-2\right)!\cdot2!}=15\)
=>\(n+\dfrac{n^2-n}{2}=15\)
=>2n+n^2-n=30
=>n^2+n-30=0
=>n=5
=>(x+2/x^4)^5
SHTQ là: \(C^k_5\cdot x^{5-k}\cdot\left(\dfrac{2}{x^4}\right)^k=C^k_5\cdot x^{5-5k}\cdot2^k\)
SỐ hạng ko chứa x tương ứng với 5-5k=0
=>k=1
=>Số hạng đó là 5*2=10
Câu 8 là \(\left(8a^2-\dfrac{1}{2}b\right)^6\) hay \(\left(8a^2-\dfrac{1}{2b}\right)^6\) bạn? (tốt nhất là bạn dùng tính năng gõ công thức toán để đăng đề, hoặc chụp hình gửi đề trực tiếp lên, hiện nay hoc24 đã cho đăng đề bằng hình ảnh)
9.
\(\left(x+8.x^{-2}\right)^9=\sum\limits^9_{k=0}C_9^kx^{9-k}.8^k.x^{-2k}=\sum\limits^9_{k=0}C_9^k8^kx^{9-3k}\)
Số hạng ko chứa x \(\Rightarrow9-3k=0\Rightarrow k=3\)
Số hạng đó là: \(C_9^3.8^3=...\)
\(\left(C_n^6+C_n^7\right)+2\left(C_n^7+C_n^8\right)+\left(C_n^8+C_n^9\right)=2C_{n+2}^8\)
\(\Leftrightarrow C_{n+1}^7+2C_{n+1}^8+C_{n+1}^9=2C_{n+2}^8\)
\(\Leftrightarrow\left(C_{n+1}^7+C_{n+1}^8\right)+\left(C_{n+1}^8+C_{n+1}^9\right)=2C_{n+2}^8\)
\(\Leftrightarrow C_{n+2}^8+C_{n+2}^9=2C_{n+2}^8\)
\(\Leftrightarrow C_{n+2}^9=C_{n+2}^8\)
\(\Leftrightarrow n+2=9+8\)
\(\Rightarrow n=15\)
\(\left(x^2-\dfrac{1}{x^2}\right)^{15}\) có SHTQ: \(C_{15}^kx^{2k}.\left(-1\right)^{15-k}.x^{2k-30}=C_{15}^k.\left(-1\right)^{15-k}.x^{4k-30}\)
Số hạng ko chứa x \(\Rightarrow4k-30=0\) ko có k nguyên thỏa mãn
\(\Rightarrow\) Ko tồn tại số hạng ko chứa x
Đề bài sai
Ta có:
\(2A_n^2=C_{n-1}^2+C_{n-1}^3\) \(\left(n\ge4\right)\)
\(\Rightarrow2\cdot\dfrac{n!}{\left(n-2\right)!}=\dfrac{\left(n-1\right)!}{2!\left(n-1-2\right)!}+\dfrac{\left(n-1\right)!}{3!\left(n-1-3\right)!}\)
\(\Rightarrow2\cdot n\left(n-1\right)=\dfrac{\left(n-1\right)\left(n-2\right)}{4}+\dfrac{\left(n-1\right)\left(n-2\right)\left(n-3\right)}{6}\)
\(\Rightarrow2n=\dfrac{n-2}{4}+\dfrac{\left(n-2\right)\left(n-3\right)}{6}\)
\(\Rightarrow n=14\) hoặc \(n=0\left(loại\right)\)
Với n=14 ta có khai triển:
\(\left(x^2-\dfrac{1}{x^2}\right)^{14}=\sum\limits^{14}_{k=0}\cdot C_{14}^k\cdot\left(x^2\right)^{14-k}\cdot\left(\dfrac{1}{x^2}\right)^k\)
\(=C_{14}^k\cdot x^{28-4k}\)
Số hạng không chứa x: \(\Rightarrow28-4k=0\Rightarrow k=7\)
Vậy số hạng không chứa x trong khai triển là:
\(C_{14}^7\cdot x^{28-4\cdot7}=C_{14}^7=3432\)
Đáp án A
Ta có
x 2 + 2 x 6 = ∑ k = 0 6 C k 6 x 2 6 − k 2 x k = ∑ k = 0 6 C k 6 2 k x 12 − 3 k .
Số hạng không chứa x ⇔ 12 − 3 k = 0 ⇔ k = 4 ⇒ a 4 = C 6 4 2 4 .