Cho hình chóp tam giác đều có cạnh đáy bằng a và cạnh bên tạo với đáy một góc φ . Thể tích của khối chóp đó bằng
A . a 3 tan φ 12
B . a 3 c o t φ 12
C . a 3 tan φ 6
D . a 3 c o t φ 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi H là tâm của tam giác đều A B C ⇒ S H ⊥ A B C
S A ; A B C = S A ; H A = ∠ S A H = φ A H = 2 3 . a 3 2 = a 3 3 S H = A H . tan φ = a 3 3 tan φ V S . A B C = 1 3 . S H . S A B C = 1 3 . a 3 3 tan φ . a 2 3 4 = a 3 tan φ 12
Kẻ SH ⊥ (ABC). Đường thẳng AH cắt BC tại I.
Do S.ABC là hình chóp tam giác đều nên H là trọng tâm của ΔABC.
Do đó
Thể tích khối chóp S.ABC là:
Đáp án A
Từ giả thiết, ta suy ra góc giữa SC và mặt đáy chính là góc SCA. Suy ra tam giác SAC vuông cân ở A, và SA=AC=a.
Thể tích khối chóp là
V = 1 3 S A B C = 1 3 . 3 4 a 2 . a = 3 12 a 3
Đáp án D
Phương pháp:
+) Xác định góc giữa SC và mặt đáy.
+) Tính SA.
Cách giải:
Dễ thấy AC là hình chiếu vuông góc của SC trên (ABC) nên S C ; A B C = S C ; A C = S C A ^ = 60 °
Đáp án A
Gọi H là tâm của tam giác đều ABC => SH ⊥ (ABC)
(SA;(ABC))