Cho hình lăng trụ ABC.A'B'C' có tất cả các cạnh đều bằng a. Góc tạo bởi cạnh bên và mặt phẳng đáy bằng 30 0 . Hình chiếu H của A trên mặt phẳng (A'B'C') là trung điểm của B’C’. Tính theo a khoảng cách giữa hai mặt phẳng đáy của lăng trụ ABC.A'B'C'.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Khoảng cách giữa hai mặt đáy là h = AH = A’H.tan A A ' H ^ = a 3 2 . tan 30 0 = a 2
Đáp án C
Gọi F là hình chiếu của A' lên mp (ABC), Nên góc A ' A F ^ là góc tạo bởi cạnh bên của AA' với (ABC), ⇒ A ' A F ^ = 30 0 ⇒ A F = A A ' cos 30 0 = 3 2 a ⇒
F là trung điểm của BC , gọi D,E là hình chiếu của F, B lên AC,H là hình chiếu của F lên AD. Dễ dàng chứng minh được FH là hình chiếu của F trên (ACC'A'), Ta có
d B , A C C ' A ' = 2 d F , A C C ' A ' = 2 F H .
A ' F = A A ' . c o s 30 0 = 1 2 a ; F D = 1 2 B E = 3 4 a
1 F H 2 = 1 A F 2 + 1 F D 2 ⇒ F H = a 21 7
Đáp án A
Hướng dẫn giải:
Ta có A'H là hình chiếu của AA' lên mặt phẳng đáy
Do đó
Lại có A ' H = a 2
⇒ A H = tan 60 o . a 2 = a 3 2 = B ' H
nên A ' B = a 6 2
Và A A ' = A ' H cos 60 o = a ⇒ A C ' = a
Mặt khác
Do đó cos α = A C ' 2 + B ' C ' 2 - A B ' 2 2 . A C ' . B ' C ' = 1 4
Suy ra tan α = 1 cos 2 α - 1 = 3
Đáp án C
Gọi F là hình chiếu của A' lên mp (ABC), Nên góc A ' A F ^ là góc tạo bởi cạnh bên của AA' với (ABC),
=> F là trung điểm của BC, gọi D, E là hình chiếu của F, B lên AC, H là hình chiếu của F lên AD. Dễ dàng chứng minh được FH là hình chiếu của F trên (ACC'A'), Ta có
= 2FH
Ta có:
Mà ta có
a) Gọi I là trung điểm của cạnh B'C'. Theo giả thiết ta có AI ⊥ (A'B'C') và ∠ A A ′ I = 60 ο . Ta biết rằng hai mặt phẳng (ABC) và (A'B'C') song song với nhau nên khoảng cách giữa hai mặt phẳng chính là khoảng cách AI.
Do đó
b)
⇒ B′C′ ⊥ AA′
Mà AA′ // BB′ // CC′ nên B’C’ ⊥ BB’
Vậy mặt bên BCC’B’ là một hình vuông vì nó là hình thoi có một góc vuông.