Không vẽ đồ thị, hãy giải thích vì sao các hệ phương trình có 1 nghiệm duy nhất 3 x = 6 2 y = - 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 x + 5 y = 15 2 y = - 7 ⇔ y = - 3 5 x + 3 x = - 3 , 5
Ta có đường thẳng y = -3,5 song song với trục hoành
Đường thẳng y = - 3 5 x + 3 cắt trục hoành nên hai đường thẳng đó cắt nhau. Hệ phương trình có 1 nghiệm duy nhất
3 x = 6 x - 3 y = 2 ⇔ x = 2 y = 1 3 x - 2 3
Ta có đường thẳng x = 2 song song với trục tung. Đường thẳng y = 1 3 x - 2 3 cắt trục tung nên hai đường thẳng đó cắt nhau. Hệ phương trình có 1 nghiệm duy nhất.
Vì đường thẳng y = 3 song song với trục hoành còn đường thẳng y = - 23 8 x + 25 4 cắt hai trục tọa độ nên chúng cắt nhau.
Vậy hệ phương trình có một nghiệm duy nhất.
cắt nhau vì chúng có hệ số góc khác nhau.
Vậy hệ phương trình có một nghiệm duy nhất.
Vì hai đường thẳng có hệ số góc đều bằng 3 nhưng tung độ gốc khác nhau (-1 ≠ - 5/2 ) nên chúng song song với nhau.
Vậy hệ phương trình vô nghiệm.
Vì đường thẳng x = - 5/3 song song với trục tung còn đường thẳng y = - 1 5 x - 4 5 cắt hai trục tọa độ nên chúng cắt nhau.Vậy hệ phương trình có một nghiệm duy nhất.
Ta có: I(-1,5; 4,5), J(1; 2)
*x = -1,5 là nghiệm của phương trình 2 x 2 + x – 3 = 0 vì:
2 - 1 , 5 2 + (-1,5) – 3 = 4,5 – 4,5 = 0
*x = 1 là nghiệm của phương trình 2 x 2 + x – 3 = 0 vì:
2. 1 2 + 1 – 3 = 3 – 3 = 0
Khi a và c trái dấu thì ac < 0, suy ra –ac > 0, suy ra -4ac > 0
Ta có: ∆ = b 2 – 4ac, trong đó b 2 > 0
Nếu -4ac > 0 thì ∆ luôn lớn hơn 0.
Khi ∆ > 0 nghĩa là phương trình có hai nghiệm phân biệt.
Áp dụng :
Phương trình 3 2 x 2 + 3 - 2 x + 2 - 3 = 0 có:
a = 3 2 , c = 2 - 3 nên ac < 0 (vì 2 < 3 )
Vậy phương trình có 2 nghiệm phân biệt.
3 x = 6 2 y = - 7
Đường thẳng 3x = 6 song song với trục tung. Đường thẳng 2y = -7 cắt trục tung nên hai đường thẳng đó cắt nhau. Hệ phương trình có 1 nghiệm duy nhất