Cho hình chóp S.ABCcó đáy ABC là tam giác đều cạnh AB = a (a > 0). Mặt bên SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Thể tích khối chóp S.ABC là:
A . a 3 3 24
B . a 3 3 8
C . a 3 3 3
D . a 3 3 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Xét ∆SAB, ta có: SA = SB = a 2 2
ð SH = a 2
Vậy V S . A B C = 1 3 . a 2 . S A B C = 1 3 . a 2 . 1 2 3 2 . a . a = a 3 3 24
Đáp án A
Gọi H là trung điểm của AB suy ra S H ⊥ A B
Do Δ S A B vuông cân tại S nên S H = A B 2 = a 2 ; S A B C = a 2 2 ⇒ V = a 3 12 .
Gọi O là trung điểm của AB
Ta có
Trong tam giác vuông SOC có
Ta có
Vậy
Chọn C.
Đáp án A
Xét ∆SAB, ta có: SA = SB = a 2 2
=> SH = a 2
Vậy