Xếp ngẫu nhiên 3 người đàn ông, hai người đàn bà và một đứa bé vào ngồi 6 cái ghế xếp thành hàng ngang. Xác suất sao cho đứa bé ngồi giữa hai người đàn bà là:
A. 1 6
B. 1 5
C. 1 30
D. 1 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu gồm các hoán vị của 6 người. Vậy n(Ω) = 6!
Kí hiệu A là biến cố : " Đứa bé được xếp giữa hai người đàn bà ";
B là biến cố : " Đứa bé được xếp giữa hai người đàn ông ".
a) Để tạo nên một cách xếp mà đứa bé được xếp giữa hai người đàn bà, ta tiến hành như sau :
- Xếp đứa bé ngồi vào ghế thứ hai đến ghế thứ năm. Có 4 cách.
- Ứng với mỗi cách xếp đứa bé, có 2 cách xếp hai người đàn bà.
- Khi đã xếp hai người đàn bà và đứa bé, xếp ba người đàn ông vào các chỗ còn lại. Có 3! cách.
Theo quy tắc nhân, ta có n(A) = 4.2.3! = 48.
Từ đó:
b) Để tạo nên một cách xếp mà đứa bé ngồi giữa hai người đàn ông, ta tiến hành như sau :
- Xếp đứa bé vào các ghế thứ hai đến thứ năm. Có 4 cách.
- Chọn hai trong số ba người đàn ông. Có cách.
- Xếp hai người đàn ông ngồi hai bên đứa bé. Có 2 cách.
- Xếp ba người còn lại vào ba chỗ còn lại. Có 3! cách. Theo quy tắc nhân, ta có
Đáp án D
Số cách xếp 6 người thành hàng ngang là: 6!
Coi 2 người đàn bà là 1 thì số cách sắp xếp người lớn là: 4!=24
Hai người đàn bà đổi chỗ cho nhau ta được một trường hợp riêng nên số cách xếp người lớn là: 2.4!=48
ứng với mỗi cách xếp người lớn chỉ có một cách xếp trẻ con nên số cách để xếp 1 đứa trẻ ngồi giữa hai người đàn bà là: 48
⇒ p = 48 6 ! = 1 5
Đáp án là D.
• Số phần tử không gian mẫu n ( Ω ) = 6 !
• Gọi biến cố A" đứa bé ngồi giữa hai người đàn bà".
+ Xếp 2 người đàn bà ngồi 2 bên đứa bé có: 2! cách
+ Xem 2 người đàn bà và đứa bé là 1 vị trí sắp xếp với 3 người đàn ông còn lại có: 4! cách
+ Số phần tử của A: n(A) = 2!.4!
Xác suất cần tìm P ( A ) = 2 ! . 4 ! 6 ! = 1 15
Đáp án D
Số cách xếp 6 người thành hàng ngang là: 6!
Coi 2 người đàn bà là 1 thì số cách sắp xếp người lớn là: 4! = 24
Hai người đàn bà đổi chỗ cho nhau ta được một trường hợp riêng nên số cách xếp người lớn là: 2.4! = 48
ứng với mỗi cách xếp người lớn chỉ có một cách xếp trẻ con nên số cách để xếp 1 đứa trẻ ngồi giữa hai người đàn bà là: 48
⇒ p = 48 6 ! = 1 5
Đáp án là D.
• Số phần tử không gian mẫu n Ω = 6 !
• Gọi biến cố A" đứa bé ngồi giữa hai người đàn bà".
+ Xếp 2 người đàn bà ngồi 2 bên đứa bé có: 2! cách
+ Xem 2 người đàn bà và đứa bé là 1 vị trí sắp xếp với 3 người đàn ông còn lại có: 4! cách
+ Số phần tử của A : n A = 2 ! .4 !
Xác suất cần tìm P A = 2 ! .4 ! 6 ! = 1 15 .
Chọn C.
Số phần tử của không gian mẫu : Ω = P 6 = 6 ! = 720
Gọi α là một nhóm gồm 3 người trong đó có đứa bé được xếp ở giữa 2 người đàn bà: Có hai phần tử α
Có 4 phần tử gồm α và 3 người đàn ông. Xếp 4 người vào 4 vị trí, số cách xếp là:
Ω A = 4 ! . 2 = 48
Xác suất xếp thỏa mãn yêu cầu bài: P = Ω A Ω = 48 720 = 1 15 .
Đáp án D
Số cách xếp 6 người thành hàng ngang là: 6!
Coi 2 người đàn bà là 1 thì số cách sắp xếp người lớn là:4!=24
Hai người đàn bà đổi chỗ cho nhau ta được một trường hợp riêng nên số cách xếp người lớn là
2.4!=48
ứng với mỗi cách xếp người lớn chỉ có một cách xếp trẻ con nên số cách để xếp 1 đứa trẻ ngồi giữa hai người đàn bà là: 48
⇒ n = 48 6 ! = 1 5