3xy-3x+y=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3xy-3x-y=0\)
\(\Rightarrow3x\left(y-1\right)-\left(y-1\right)=0+1\)
\(\Rightarrow\left(3x-1\right)\left(y-1\right)=1\)
\(\Rightarrow\left(3x-1\right);\left(y-1\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
Xét bảng
3x-1 | 1 | -1 |
y-1 | 1 | -1 |
x | 2/3 | 0 |
y | 2 | 0 |
Vậy.............................
(3x-1).y = -12<=> 3x-1 và y là Ư của -12 ={ \(\mp1;2;3;4;6;12\) }=> ta xét từng trường hợp : ....
Sửa đề: Tìm cặp \(x,y\in Z\) thỏa mãn \(x^2+3xy+2y^2+3x+6y-4=0\).
\(x^2+3xy+2y^2+3x+6y-4=0\)
\(\Leftrightarrow x^2+2xy+xy+2y^2+3x+6y=4\)
\(\Leftrightarrow\left(x^2+2xy\right)+\left(xy+2y^2\right)+\left(3x+6y\right)=4\)
\(\Leftrightarrow x\left(x+2y\right)+y\left(x+2y\right)+3\left(x+2y\right)=4\)
\(\Leftrightarrow\left(x+2y\right)\left(x+y+3\right)=4\)
Vì \(x,y\in Z\Rightarrow\left(x+2y\right)\left(x+y+3\right)\in Z\)
Trường hợp 1: \(\left\{{}\begin{matrix}x+2y=1\\x+y+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\) (thỏa mãn)
Trường hợp 2: \(\left\{{}\begin{matrix}x+2y=4\\x+y+3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=6\end{matrix}\right.\) (thỏa mãn)
Trường hợp 3: \(\left\{{}\begin{matrix}x+2y=2\\x+y+3=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\) (thỏa mãn)
Trường hợp 4: \(\left\{{}\begin{matrix}x+2y=-2\\x+y+3=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=3\end{matrix}\right.\) (thỏa mãn)
Vậy: \(\left(x,y\right)=\left[\left(1;0\right),\left(-8;6\right),\left(-4;3\right),\left(-8;3\right)\right]\)