K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

Đáp án A

đúng với công sai d = 0. Trường hợp d #0

21 tháng 4 2019

22 tháng 8 2023

S= u1.u+ u2.u2+...+un.u

S = u1.(u- d) + u2.(u3 - d)+...+un(un+1 - d)

S = u1.u2 + u2.u+...+un.un+1-d(u1+u2+...+un)

Đặt A = u2.u3 + u3.u4+...+un.un+1

3d.A = u2.u3.(u4-u1) + u3.u4.(u5-u2)+...+un.un+1.(un+2-un-1

3d.A = u2.u3.u4 - u1.u2.u3 + u3.u4.u- u2.u3.u4+...+un.un+1.un+2 - un-1.un.un+1

3d.A = un.un+1.un+2 - u1.u2.u3

3d.A = (u1 + d.n - d)(u1 + d.n)(u+ d.n + d) - u1.(u1+d).(u1+2.d) 

A = [(u1 + d.n - d)(u1 + d.n)(u+ d.n + d) - u1.(u1+d).(u1+2.d)]/(3.d) 

S = A + u1.(u1 + d) + d[2.u1+(n-1).d].n/2 

 

     
27 tháng 10 2023

Theo đề, ta có: \(S_n=3003\)

=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)

=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)

=>n(n+1)=6006

=>n^2+n-6006=0

=>(n-77)(n+78)=0

=>n=77(nhận) hoặc n=-78(loại)

Vậy: n=77

25 tháng 4 2019

em moi hoc lo 8

NV
25 tháng 4 2019

\(\left\{{}\begin{matrix}u_{14}=u_1+13d=18\\u_4=u_1+3d=-12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-21\end{matrix}\right.\)

Tổng 16 số hạng đầu tiên:

\(S_{16}=\frac{16\left(2u_1+15d\right)}{2}=24\)

1 tháng 7 2019

Q nguyên khi : 

3|n| + 1 ⋮ 3|n| + 1 

=> 3|n| - 1 + 2 ⋮ 3|n| + 1

=> 2 ⋮ 3|n| + 1

=> 3|n| + 1 thuộc Ư(2) mà n là số nguyên

=> 3|n| + 1 thuộc {-1; 1; -2; 2}

=> 3|n| thuộc {-2; 0; -3; 1}

=> |n| thuộc {0; -1} vì |n| > 0

=> n = 0

vậy_

24 tháng 10 2019

20 tháng 12 2019
https://i.imgur.com/0504RrG.jpg
17 tháng 7 2019

A nguyên khi : 

2n - 5 ⋮ n + 1

=> 2n + 2 - 7 ⋮ n + 1

=> 2(n + 1) - 7 ⋮ n + 1

=> 7 ⋮ n + 1

=> n + 1 thuộc Ư(7) 

=> n + 1 thuộc {-1; 1; -7; 7}

=> n thuộc {-2; 0; -8; 6}

vậy_

17 tháng 7 2019

Ta có : \(A\inℤ\Leftrightarrow2n-5⋮n+1\)

\(\Rightarrow2n+2-7⋮n+1\)

\(\Rightarrow2\left(n+1\right)-7⋮n+1\)

mà \(2\left(n+1\right)⋮n+1\)

\(\Rightarrow-7⋮n+1\)

\(\Rightarrow n+1\inƯ\left(-7\right)\)

\(\Rightarrow n+1\in\left\{1;7;-1;-7\right\}\)

Lập bảng xét 4 trường hợp : 

\(n+1\)\(1\)\(7\)\(-1\)\(-7\)
\(n\)\(0\)\(6\)\(-2\)\(-8\)

Vậy \(n\in\left\{0;6;-2;-8\right\}\)